Search Results

Now showing 1 - 5 of 5
  • Item
    Coal fly ash: Linking immersion freezing behavior and physicochemical particle properties
    (Göttingen : Copernicus GmbH, 2018) Grawe, S.; Augustin-Bauditz, S.; Clemen, H.-C.; Ebert, M.; Eriksen Hammer, S.; Lubitz, J.; Reicher, N.; Rudich, Y.; Schneider, J.; Staacke, R.; Stratmann, F.; Welti, A.; Wex, H.
    To date, only a few studies have investigated the potential of coal fly ash particles to trigger heterogeneous ice nucleation in cloud droplets. The presented measurements aim at expanding the sparse dataset and improving process understanding of how physicochemical particle properties can influence the freezing behavior of coal fly ash particles immersed in water. Firstly, immersion freezing measurements were performed with two single particle techniques, i.e., the Leipzig Aerosol Cloud Interaction Simulator (LACIS) and the SPectrometer for Ice Nuclei (SPIN). The effect of suspension time on the efficiency of the coal fly ash particles when immersed in a cloud droplet is analyzed based on the different residence times of the two instruments and employing both dry and wet particle generation. Secondly, two cold-stage setups, one using microliter sized droplets (Leipzig Ice Nucleation Array) and one using nanoliter sized droplets (WeIzmann Supercooled Droplets Observation on Microarray setup) were applied. We found that coal fly ash particles are comparable to mineral dust in their immersion freezing behavior when being dry generated. However, a significant decrease in immersion freezing efficiency was observed during experiments with wet-generated particles in LACIS and SPIN. The efficiency of wet-generated particles is in agreement with the cold-stage measurements. In order to understand the reason behind the deactivation, a series of chemical composition, morphology, and crystallography analyses (single particle mass spectrometry, scanning electron microscopy coupled with energy dispersive X-ray microanalysis, X-ray diffraction analysis) were performed with dry- and wet-generated particles. From these investigations, we conclude that anhydrous CaSO4 and CaO - which, if investigated in pure form, show the same qualitative immersion freezing behavior as observed for dry-generated coal fly ash particles - contribute to triggering heterogeneous ice nucleation at the particle-water interface. The observed deactivation in contact with water is related to changes in the particle surface properties which are potentially caused by hydration of CaSO4 and CaO. The contribution of coal fly ash to the ambient population of ice-nucleating particles therefore depends on whether and for how long particles are immersed in cloud droplets.
  • Item
    The immersion mode ice nucleation behavior of mineral dusts: A comparison of different pure and surface modified dusts
    (Hoboken, NJ : Wiley, 2014) Augustin-Bauditz, S.; Wex, H.; Kanter, S.; Ebert, M.; Niedermeier, D.; Stolz, F.; Prager, A.; Stratmann, F.
    In this study we present results from immersion freezing experiments with size-segregated mineral dust particles. Besides two already existing data sets for Arizona Test Dust (ATD), and Fluka kaolinite, we show two new data sets for illite-NX, which consists mainly of illite, a clay mineral, and feldspar, a common crustal material. The experiments were carried out with the Leipzig Aerosol Cloud Interaction Simulator. After comparing the different dust samples, it became obvious that the freezing ability was positively correlated with the K-feldspar content. Furthermore, a comparison of the composition of the ATD, illite-NX, and feldspar samples suggests that within the K-feldspars, microcline is more ice nucleation active than orthoclase. A coating with sulfuric acid leads to a decrease in the ice nucleation ability of all mineral dusts, with the effect being more pronounced for the feldspar sample. Key Points The freezing ability of mineral dusts correlated with the K-feldspar contentAmong feldspars, microcline shows a better ice nucleation ability than orthoclaseAfter coating, all investigated dusts feature a similar ice nucleation ability.
  • Item
    Ice nucleation by water-soluble macromolecules
    (München : European Geopyhsical Union, 2015) Pummer, B.G.; Budke, C.; Augustin-Bauditz, S.; Niedermeier, D.; Felgitsch, L.; Kampf, C.J.; Huber, R.G.; Liedl, K.R.; Loerting, T.; Moschen, T.; Schauperl, M.; Tollinger, M.; Morris, C.E.; Wex, H.; Grothe, H.; Pöschl, U.; Koop, T.; Fröhlich-Nowoisky, J.
    Cloud glaciation is critically important for the global radiation budget (albedo) and for initiation of precipitation. But the freezing of pure water droplets requires cooling to temperatures as low as 235 K. Freezing at higher temperatures requires the presence of an ice nucleator, which serves as a template for arranging water molecules in an ice-like manner. It is often assumed that these ice nucleators have to be insoluble particles. We point out that also free macromolecules which are dissolved in water can efficiently induce ice nucleation: the size of such ice nucleating macromolecules (INMs) is in the range of nanometers, corresponding to the size of the critical ice embryo. As the latter is temperature-dependent, we see a correlation between the size of INMs and the ice nucleation temperature as predicted by classical nucleation theory. Different types of INMs have been found in a wide range of biological species and comprise a variety of chemical structures including proteins, saccharides, and lipids. Our investigation of the fungal species Acremonium implicatum, Isaria farinosa, and Mortierella alpina shows that their ice nucleation activity is caused by proteinaceous water-soluble INMs. We combine these new results and literature data on INMs from fungi, bacteria, and pollen with theoretical calculations to develop a chemical interpretation of ice nucleation and water-soluble INMs. This has atmospheric implications since many of these INMs can be released by fragmentation of the carrier cell and subsequently may be distributed independently. Up to now, this process has not been accounted for in atmospheric models.
  • Item
    A comprehensive laboratory study on the immersion freezing behavior of illite NX particles: A comparison of 17 ice nucleation measurement techniques
    (München : European Geopyhsical Union, 2015) Hiranuma, N.; Augustin-Bauditz, S.; Bingemer, H.; Budke, C.; Curtius, J.; Danielczok, A.; Diehl, K.; Dreischmeier, K.; Ebert, M.; Frank, F.; Hoffmann, N.; Kandler, K.; Kiselev, A.; Koop, T.; Leisner, T.; Möhler, O.; Nillius, B.; Peckhaus, A.; Rose, D.; Weinbruch, S.; Wex, H.; Boose, Y.; DeMott, P.J.; Hader, J.D.; Hill, T.C.J.; Kanji, Z.A.; Kulkarn, G.; Levin, E.J.T.; McCluskey, C.S.; Murakami, M.; Murray, B.J.; Niedermeier, D.; Petters, M.D.; O'Sullivan, D.; Saito, A.; Schill, G.P.; Tajiri, T.; Tolbert, M.A.; Welti, A.; Whale, T.F.; Wright, T.P.; Yamashita, K.
    Immersion freezing is the most relevant heterogeneous ice nucleation mechanism through which ice crystals are formed in mixed-phase clouds. In recent years, an increasing number of laboratory experiments utilizing a variety of instruments have examined immersion freezing activity of atmospherically relevant ice-nucleating particles. However, an intercomparison of these laboratory results is a difficult task because investigators have used different ice nucleation (IN) measurement methods to produce these results. A remaining challenge is to explore the sensitivity and accuracy of these techniques and to understand how the IN results are potentially influenced or biased by experimental parameters associated with these techniques. Within the framework of INUIT (Ice Nuclei Research Unit), we distributed an illite-rich sample (illite NX) as a representative surrogate for atmospheric mineral dust particles to investigators to perform immersion freezing experiments using different IN measurement methods and to obtain IN data as a function of particle concentration, temperature (T), cooling rate and nucleation time. A total of 17 measurement methods were involved in the data intercomparison. Experiments with seven instruments started with the test sample pre-suspended in water before cooling, while 10 other instruments employed water vapor condensation onto dry-dispersed particles followed by immersion freezing. The resulting comprehensive immersion freezing data set was evaluated using the ice nucleation active surface-site density, ns, to develop a representative ns(T) spectrum that spans a wide temperature range (−37 °C < T < −11 °C) and covers 9 orders of magnitude in ns. In general, the 17 immersion freezing measurement techniques deviate, within a range of about 8 °C in terms of temperature, by 3 orders of magnitude with respect to ns. In addition, we show evidence that the immersion freezing efficiency expressed in ns of illite NX particles is relatively independent of droplet size, particle mass in suspension, particle size and cooling rate during freezing. A strong temperature dependence and weak time and size dependence of the immersion freezing efficiency of illite-rich clay mineral particles enabled the ns parameterization solely as a function of temperature. We also characterized the ns(T) spectra and identified a section with a steep slope between −20 and −27 °C, where a large fraction of active sites of our test dust may trigger immersion freezing. This slope was followed by a region with a gentler slope at temperatures below −27 °C. While the agreement between different instruments was reasonable below ~ −27 °C, there seemed to be a different trend in the temperature-dependent ice nucleation activity from the suspension and dry-dispersed particle measurements for this mineral dust, in particular at higher temperatures. For instance, the ice nucleation activity expressed in ns was smaller for the average of the wet suspended samples and higher for the average of the dry-dispersed aerosol samples between about −27 and −18 °C. Only instruments making measurements with wet suspended samples were able to measure ice nucleation above −18 °C. A possible explanation for the deviation between −27 and −18 °C is discussed. Multiple exponential distribution fits in both linear and log space for both specific surface area-based ns(T) and geometric surface area-based ns(T) are provided. These new fits, constrained by using identical reference samples, will help to compare IN measurement methods that are not included in the present study and IN data from future IN instruments.
  • Item
    Intercomparing different devices for the investigation of ice nucleating particles using Snomax® as test substance
    (München : European Geopyhsical Union, 2015) Wex, H.; Augustin-Bauditz, S.; Boose, Y.; Budke, C.; Curtius, J.; Diehl, K.; Dreyer, A.; Frank, F.; Hartmann, S.; Hiranuma, N.; Jantsch, E.; Kanji, Z.A.; Kiselev, A.; Koop, T.; Möhler, O.; Niedermeier, D.; Nillius, B.; Rösch, M.; Rose, D.; Schmidt, C.; Steinke, I.; Stratmann, F.
    Seven different instruments and measurement methods were used to examine the immersion freezing of bacterial ice nuclei from Snomax® (hereafter Snomax), a product containing ice-active protein complexes from non-viable Pseudomonas syringae bacteria. The experimental conditions were kept as similar as possible for the different measurements. Of the participating instruments, some examined droplets which had been made from suspensions directly, and the others examined droplets activated on previously generated Snomax particles, with particle diameters of mostly a few hundred nanometers and up to a few micrometers in some cases. Data were obtained in the temperature range from −2 to −38 °C, and it was found that all ice-active protein complexes were already activated above −12 °C. Droplets with different Snomax mass concentrations covering 10 orders of magnitude were examined. Some instruments had very short ice nucleation times down to below 1 s, while others had comparably slow cooling rates around 1 K min−1. Displaying data from the different instruments in terms of numbers of ice-active protein complexes per dry mass of Snomax, nm, showed that within their uncertainty, the data agree well with each other as well as to previously reported literature results. Two parameterizations were taken from literature for a direct comparison to our results, and these were a time-dependent approach based on a contact angle distribution (Niedermeier et al., 2014) and a modification of the parameterization presented in Hartmann et al. (2013) representing a time-independent approach. The agreement between these and the measured data were good; i.e., they agreed within a temperature range of 0.6 K or equivalently a range in nm of a factor of 2. From the results presented herein, we propose that Snomax, at least when carefully shared and prepared, is a suitable material to test and compare different instruments for their accuracy of measuring immersion freezing.