Search Results

Now showing 1 - 2 of 2
  • Item
    Covalency versus magnetic axiality in Nd molecular magnets: Nd-photoluminescence, strong ligand-field, and unprecedented nephelauxetic effect in fullerenes NdM2N@C80 (M = Sc, Lu, Y)
    (Cambridge : RSC, 2023) Yang, Wei; Rosenkranz, Marco; Velkos, Georgios; Ziegs, Frank; Dubrovin, Vasilii; Schiemenz, Sandra; Spree, Lukas; de Souza Barbosa, Matheus Felipe; Guillemard, Charles; Valvidares, Manuel; Büchner, Bernd; Liu, Fupin; Avdoshenko, Stanislav M.; Popov, Alexey A.
    Nd-based nitride clusterfullerenes NdM2N@C80 with rare-earth metals of different sizes (M = Sc, Y, Lu) were synthesized to elucidate the influence of the cluster composition, shape and internal strain on the structural and magnetic properties. Single crystal X-ray diffraction revealed a very short Nd-N bond length in NdSc2N@C80. For Lu and Y analogs, the further shortening of the Nd-N bond and pyramidalization of the NdM2N cluster are predicted by DFT calculations as a result of the increased cluster size and a strain caused by the limited size of the fullerene cage. The short distance between Nd and nitride ions leads to a very large ligand-field splitting of Nd3+ of 1100-1200 cm−1, while the variation of the NdM2N cluster composition and concomitant internal strain results in the noticeable modulation of the splitting, which could be directly assessed from the well-resolved fine structure in the Nd-based photoluminescence spectra of NdM2N@C80 clusterfullerenes. Photoluminescence measurements also revealed an unprecedentedly strong nephelauxetic effect, pointing to a high degree of covalency. The latter appears detrimental to the magnetic axiality despite the strong ligand field. As a result, the ground magnetic state has considerable transversal components of the pseudospin g-tensor, and the slow magnetic relaxation of NdSc2N@C80 could be observed by AC magnetometry only in the presence of a magnetic field. A combination of the well-resolved magneto-optical states and slow relaxation of magnetization suggests that Nd clusterfullerenes can be useful building blocks for magneto-photonic quantum technologies.
  • Item
    Using internal strain and mass to modulate Dy⋯Dy coupling and relaxation of magnetization in heterobimetallic metallofullerenes DyM2N@C80 and Dy2MN@C80 (M = Sc, Y, La, Lu)
    (Cambridge : RSC, 2022) Hao, Yajuan; Velkos, Georgios; Schiemenz, Sandra; Rosenkranz, Marco; Wang, Yaofeng; Büchner, Bernd; Avdoshenko, Stanislav M.; Popov, Alexey A.; Liu, Fupin
    Endohedral clusters inside metallofullerenes experience considerable inner strain when the size of the hosting cage is comparably small. This strain can be tuned in mixed-metal metallofullerenes by combining metals of different sizes. Here we demonstrate that the internal strain and mass can be used as variables to control Dy⋯Dy coupling and relaxation of magnetization in Dy-metallofullerenes. Mixed-metal nitride clusterfullerenes DyxY3−xN@Ih-C80 (x = 0-3) and Dy2LaN@Ih-C80 combining Dy with diamagnetic rare-earth elements, Y and La, were synthesized and characterized by single-crystal X-ray diffraction, SQUID magnetometry, ab initio calculations, and spectroscopic techniques. DyxY3−xN clusters showed a planar structure, but the slightly larger size of Dy3+ in comparison with that of Y3+ resulted in increased elongation of the nitrogen thermal ellipsoid, showing enhancement of the out-of-plane vibrational amplitude. When Dy was combined with larger La, the Dy2LaN cluster appeared strongly pyramidal with the distance between two nitrogen sites of 1.15(1) Å, whereas DyLa2N@C80 could not be obtained in a separable yield. Magnetic studies revealed that the relaxation of magnetization and blocking temperature of magnetization in the DyM2N@C80 series (M = Sc, Y, Lu) correlated with the mass of M, with DySc2N@C80 showing the fastest and DyLu2N@C80 the slowest relaxation. Ab initio calculations predicted very similar g-tensors for Dy3+ ground state pseudospin in all studied DyM2N@C80 molecules, suggesting that the variation in relaxation is caused by different vibrational spectra of these compounds. In the Dy2MN@C80 series (M = Sc, Y, La, Lu), the magnetic and hysteretic behavior was found to correlate with Dy⋯Dy coupling, which in turn appears to depend on the size of M3+. Across the Dy2MN@C80 series, the energy difference between ferromagnetic and antiferromagnetic states changes from 5.6 cm−1 in Dy2ScN@C80 to 3.0 cm−1 in Dy2LuN@C80, 1.0 cm−1 in Dy2YN@C80, and −0.8 cm−1 in Dy2LaN@C80. The coupling of Dy ions suppresses the zero-field quantum tunnelling of magnetization but opens new relaxation channels, making the relaxation rate dependent on the coupling strengths. DyY2N@C80 and Dy2YN@C80 were found to be non-luminescent, while the luminescence reported for DyY2N@C80 was caused by traces of Y3N@C80 and Y2ScN@C80