Search Results

Now showing 1 - 7 of 7
  • Item
    Carbon cage isomers and magnetic Dy⋯Dy interactions in Dy2O@C88 and Dy2C2@C88 metallofullerenes
    (Cambridge : RSC, 2022) Yang, Wei; Velkos, Georgios; Sudarkova, Svetlana; Büchner, Bernd; Avdoshenko, Stanislav M.; Liu, Fupin; Popov, Alexey A.; Chen, Ning
    Three isomers of Dy2O@C88 and two isomers of Dy2C2@C88 were synthesized and structurally characterized by single-crystal X-ray diffraction, vibrational spectroscopy, and DFT calculations. Both types of clusterfullerenes feature 4-fold electron transfer to the carbon cage, thus resulting in the same carbon cage isomers identified as C1(26), Cs(32), and D2(35). The studies of Dy⋯Dy superexchange interactions in Dy2O and Dy2C2 clusters revealed that the O2− bridge favors antiferromagnetic coupling whereas the acetylide group C22− supports ferromagnetic coupling of Dy magnetic moments. The strength of the coupling showed a considerable variability in different cage isomers. All metallofullerenes exhibited slow relaxation of magnetization and magnetic hysteresis. In Dy2O@C88 isomers the hysteresis remained open up to 7-9 K, while in Dy2C2@C88 the hysteresis loops were closed already at 2.5 K. This study demonstrated that both the endohedral bridge between metal atoms and the fullerene cage play an important role in magnetic interactions and relaxation of magnetization.
  • Item
    Magnetic hysteresis and strong ferromagnetic coupling of sulfur-bridged Dy ions in clusterfullerene Dy2S@C82
    (Cambridge : RSC, 2020) Krylov, Denis; Velkos, Georgios; Chen, Chia-Hsiang; Büchner, Bernd; Kostanyan, Aram; Greber, Thomas; Avdoshenko, Stanislav M.; Popov, Alexey A.
    Two isomers of metallofullerene Dy2S@C82 with sulfur-bridged Dy ions exhibit broad magnetic hysteresis with sharp steps at sub-Kelvin temperature. Analysis of the level crossing events for different orientations of a magnetic field showed that even in powder samples, the hysteresis steps caused by quantum tunneling of magnetization can provide precise information on the strength of intramolecular Dy⋯Dy interactions. A comparison of different methods to determine the energy difference between ferromagnetic and antiferromagnetic states showed that sub-Kelvin hysteresis gives the most robust and reliable values. The ground state in Dy2S@C82 has ferromagnetic coupling of Dy magnetic moments, whereas the state with antiferromagnetic coupling in Cs and C3v cage isomers is 10.7 and 5.1 cm-1 higher, respectively. The value for the Cs isomer is among the highest found in metallofullerenes and is considerably larger than that reported in non-fullerene dinuclear molecular magnets. Magnetization relaxation times measured in zero magnetic field at sub-Kelvin temperatures tend to level off near 900 and 3200 s in Cs and C3v isomers. These times correspond to the quantum tunneling relaxation mechanism, in which the whole magnetic moment of the Dy2S@C82 molecule flips at once as a single entity. © the Partner Organisations.
  • Item
    Using internal strain and mass to modulate Dy⋯Dy coupling and relaxation of magnetization in heterobimetallic metallofullerenes DyM2N@C80 and Dy2MN@C80 (M = Sc, Y, La, Lu)
    (Cambridge : RSC, 2022) Hao, Yajuan; Velkos, Georgios; Schiemenz, Sandra; Rosenkranz, Marco; Wang, Yaofeng; Büchner, Bernd; Avdoshenko, Stanislav M.; Popov, Alexey A.; Liu, Fupin
    Endohedral clusters inside metallofullerenes experience considerable inner strain when the size of the hosting cage is comparably small. This strain can be tuned in mixed-metal metallofullerenes by combining metals of different sizes. Here we demonstrate that the internal strain and mass can be used as variables to control Dy⋯Dy coupling and relaxation of magnetization in Dy-metallofullerenes. Mixed-metal nitride clusterfullerenes DyxY3−xN@Ih-C80 (x = 0-3) and Dy2LaN@Ih-C80 combining Dy with diamagnetic rare-earth elements, Y and La, were synthesized and characterized by single-crystal X-ray diffraction, SQUID magnetometry, ab initio calculations, and spectroscopic techniques. DyxY3−xN clusters showed a planar structure, but the slightly larger size of Dy3+ in comparison with that of Y3+ resulted in increased elongation of the nitrogen thermal ellipsoid, showing enhancement of the out-of-plane vibrational amplitude. When Dy was combined with larger La, the Dy2LaN cluster appeared strongly pyramidal with the distance between two nitrogen sites of 1.15(1) Å, whereas DyLa2N@C80 could not be obtained in a separable yield. Magnetic studies revealed that the relaxation of magnetization and blocking temperature of magnetization in the DyM2N@C80 series (M = Sc, Y, Lu) correlated with the mass of M, with DySc2N@C80 showing the fastest and DyLu2N@C80 the slowest relaxation. Ab initio calculations predicted very similar g-tensors for Dy3+ ground state pseudospin in all studied DyM2N@C80 molecules, suggesting that the variation in relaxation is caused by different vibrational spectra of these compounds. In the Dy2MN@C80 series (M = Sc, Y, La, Lu), the magnetic and hysteretic behavior was found to correlate with Dy⋯Dy coupling, which in turn appears to depend on the size of M3+. Across the Dy2MN@C80 series, the energy difference between ferromagnetic and antiferromagnetic states changes from 5.6 cm−1 in Dy2ScN@C80 to 3.0 cm−1 in Dy2LuN@C80, 1.0 cm−1 in Dy2YN@C80, and −0.8 cm−1 in Dy2LaN@C80. The coupling of Dy ions suppresses the zero-field quantum tunnelling of magnetization but opens new relaxation channels, making the relaxation rate dependent on the coupling strengths. DyY2N@C80 and Dy2YN@C80 were found to be non-luminescent, while the luminescence reported for DyY2N@C80 was caused by traces of Y3N@C80 and Y2ScN@C80
  • Item
    Robust Single Molecule Magnet Monolayers on Graphene and Graphite with Magnetic Hysteresis up to 28 K
    (Weinheim : Wiley-VCH, 2021) Spree, Lukas; Liu, Fupin; Neu, Volker; Rosenkranz, Marco; Velkos, Georgios; Wang, Yaofeng; Schiemenz, Sandra; Dreiser, Jan; Gargiani, Pierluigi; Valvidares, Manuel; Chen, Chia-Hsiang; Büchner, Bernd; Avdoshenko, Stanislav M.; Popov, Alexey A.
    The chemical functionalization of fullerene single molecule magnet Tb2@C80(CH2Ph) enables the facile preparation of robust monolayers on graphene and highly oriented pyrolytic graphite from solution without impairing their magnetic properties. Monolayers of endohedral fullerene functionalized with pyrene exhibit magnetic bistability up to a temperature of 28 K. The use of pyrene terminated linker molecules opens the way to devise integration of spin carrying units encapsulated by fullerene cages on graphitic substrates, be it single-molecule magnets or qubit candidates. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH
  • Item
    Substrate-Independent Magnetic Bistability in Monolayers of the Single-Molecule Magnet Dy2ScN@C80 on Metals and Insulators
    (Weinheim : Wiley-VCH, 2020) Krylov, Denis S.; Schimmel, Sebastian; Dubrovin, Vasilii; Liu, Fupin; Nguyen, T.T. Nhung; Spree, Lukas; Chen, Chia-Hsiang; Velkos, Georgios; Bulbucan, Claudiu; Westerström, Rasmus; Studniarek, Michał; Dreiser, Jan; Hess, Christian; Büchner, Bernd; Avdoshenko, Stanislav M.; Popov, Alexey A.
    Magnetic hysteresis is demonstrated for monolayers of the single-molecule magnet (SMM) Dy2ScN@C80 deposited on Au(111), Ag(100), and MgO|Ag(100) surfaces by vacuum sublimation. The topography and electronic structure of Dy2ScN@C80 adsorbed on Au(111) were studied by STM. X-ray magnetic CD studies show that the Dy2ScN@C80 monolayers exhibit similarly broad magnetic hysteresis independent on the substrate used, but the orientation of the Dy2ScN cluster depends strongly on the surface. DFT calculations show that the extent of the electronic interaction of the fullerene molecules with the surface is increasing dramatically from MgO to Au(111) and Ag(100). However, the charge redistribution at the fullerene-surface interface is fully absorbed by the carbon cage, leaving the state of the endohedral cluster intact. This Faraday cage effect of the fullerene preserves the magnetic bistability of fullerene-SMMs on conducting substrates and facilitates their application in molecular spintronics. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Covalency versus magnetic axiality in Nd molecular magnets: Nd-photoluminescence, strong ligand-field, and unprecedented nephelauxetic effect in fullerenes NdM2N@C80 (M = Sc, Lu, Y)
    (Cambridge : RSC, 2023) Yang, Wei; Rosenkranz, Marco; Velkos, Georgios; Ziegs, Frank; Dubrovin, Vasilii; Schiemenz, Sandra; Spree, Lukas; de Souza Barbosa, Matheus Felipe; Guillemard, Charles; Valvidares, Manuel; Büchner, Bernd; Liu, Fupin; Avdoshenko, Stanislav M.; Popov, Alexey A.
    Nd-based nitride clusterfullerenes NdM2N@C80 with rare-earth metals of different sizes (M = Sc, Y, Lu) were synthesized to elucidate the influence of the cluster composition, shape and internal strain on the structural and magnetic properties. Single crystal X-ray diffraction revealed a very short Nd-N bond length in NdSc2N@C80. For Lu and Y analogs, the further shortening of the Nd-N bond and pyramidalization of the NdM2N cluster are predicted by DFT calculations as a result of the increased cluster size and a strain caused by the limited size of the fullerene cage. The short distance between Nd and nitride ions leads to a very large ligand-field splitting of Nd3+ of 1100-1200 cm−1, while the variation of the NdM2N cluster composition and concomitant internal strain results in the noticeable modulation of the splitting, which could be directly assessed from the well-resolved fine structure in the Nd-based photoluminescence spectra of NdM2N@C80 clusterfullerenes. Photoluminescence measurements also revealed an unprecedentedly strong nephelauxetic effect, pointing to a high degree of covalency. The latter appears detrimental to the magnetic axiality despite the strong ligand field. As a result, the ground magnetic state has considerable transversal components of the pseudospin g-tensor, and the slow magnetic relaxation of NdSc2N@C80 could be observed by AC magnetometry only in the presence of a magnetic field. A combination of the well-resolved magneto-optical states and slow relaxation of magnetization suggests that Nd clusterfullerenes can be useful building blocks for magneto-photonic quantum technologies.
  • Item
    Single-Molecule Magnets DyM2N@C80 and Dy2MN@C80 (M=Sc, Lu): The Impact of Diamagnetic Metals on Dy3+ Magnetic Anisotropy, Dy⋅⋅⋅Dy Coupling, and Mixing of Molecular and Lattice Vibrations
    (Weinheim : Wiley-VCH, 2020) Spree, Lukas; Schlesier, Christin; Kostanyan, Aram; Westerström, Rasmus; Greber, Thomas; Büchner, Bernd; Avdoshenko, Stanislav M.; Popov, Alexey A.
    The substitution of scandium in fullerene single-molecule magnets (SMMs) DySc2N@C80 and Dy2ScN@C80 by lutetium has been studied to explore the influence of the diamagnetic metal on the SMM performance of dysprosium nitride clusterfullerenes. The use of lutetium led to an improved SMM performance of DyLu2N@C80, which shows a higher blocking temperature of magnetization (TB=9.5 K), longer relaxation times, and broader hysteresis than DySc2N@C80 (TB=6.9 K). At the same time, Dy2LuN@C80 was found to have a similar blocking temperature of magnetization to Dy2ScN@C80 (TB=8 K), but substantially different interactions between the magnetic moments of the dysprosium ions in the Dy2MN clusters. Surprisingly, although the intramolecular dipolar interactions in Dy2LuN@C80 and Dy2ScN@C80 are of similar strength, the exchange interactions in Dy2LuN@C80 are close to zero. Analysis of the low-frequency molecular and lattice vibrations showed strong mixing of the lattice modes and endohedral cluster librations in k-space. This mixing simplifies the spin–lattice relaxation by conserving the momentum during the spin flip and helping to distribute the moment and energy further into the lattice. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.