Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Simulating Cotton Growth and Productivity Using AquaCrop Model under Deficit Irrigation in a Semi-Arid Climate

2022, Aziz, Marjan, Rizvi, Sultan Ahmad, Sultan, Muhammad, Bazmi, Muhammad Sultan Ali, Shamshiri, Redmond R., Ibrahim, Sobhy M., Imran, Muhammad A.

AquaCrop is a water-driven model that simulates the effect of environment and management on crop production under deficit irrigation. The model was calibrated and validated using three databases and four irrigation treatments (i.e., 100%ET, 80%ET, 70%ET, and 50%ET). Model performance was evaluated by simulating canopy cover (CC), biomass accumulation, and water productivity (WP). Statistics of root mean square error (RMSE) and Willmott’s index of agreement (d) showed that model predictions are suitable for non-stressed and moderate stressed conditions. The results showed that the simulated biomass and yield were consistent with the measured values with a coefficient of determination (R2) of 0.976 and 0.950, respectively. RMSE and d-index values for canopy cover (CC) were 2.67% to 4.47% and 0.991% to 0.998% and for biomass were 0.088 to 0.666 ton/ha and 0.991 to 0.999 ton/ha, respectively. Prediction of simulated and measured biomass and final yield was acceptable with deviation ˂10%. The overall value of R2 for WP in terms of yield was 0.943. Treatment with 80% ET consumed 20% less water than the treatment with 100%ET and resulted in high WP in terms of yield (0.6 kg/m3) and biomass (1.74 kg/m3), respectively. The deviations were in the range of −2% to 11% in yield and −2% to 4% in biomass. It was concluded that AquaCrop is a useful tool in predicting the productivity of cotton under different irrigation scenarios.

Loading...
Thumbnail Image
Item

Scientific Irrigation Scheduling for Sustainable Production in Olive Groves

2022, Aziz, Marjan, Khan, Madeeha, Anjum, Naveeda, Sultan, Muhammad, Shamshiri, Redmond R., Ibrahim, Sobhy M., Balasundram, Siva K., Aleem, Muhammad

The present study aimed at investigating scientific irrigation scheduling (SIS) for the sustainable production of olive groves. The SIS allows farmers to schedule water rotation in their fields to abate crop water stress and maximize yields, which could be achieved through the precise monitoring of soil moisture. For this purpose, the study used three kinds of soil moisture sensors, including tensiometer sensors, irrometer sensors, and gypsum blocks for precise measurement of the soil moisture. These soil moisture sensors were calibrated by performing experiments in the field and laboratory at Barani Agricultural Research Institute, Chakwal in 2018 and 2019. The calibration curves were obtained by performing gravimetric analysis at 0.3 and 0.6 m depths, thereby equations were developed using regression analysis. The coefficient of determination (R2 ) at 0.3 and 0.6 m depth for tensiometer, irrometer, and gypsum blocks was found to be equal to 0.98, 0.98; 0.75, 0.89; and 0.82, and 0.95, respectively. After that, a drip irrigation system was installed with the calibrated soil moisture sensors at 0.3 and 0.6 m depth to schedule irrigation for production of olive groves as compared to conventional farmer practice, thereby soil moisture profiles of these sensors were obtained to investigate the SIS. The results showed that the irrometer sensor performed as expected and contributed to the irrigation water savings between 17% and 25% in 2018 and 2019, respectively, by reducing the number of irrigations as compared toother soil moisture sensors and farmer practices. Additionally, olive yield efficiencies of 8% and 9%were observed by the tensiometer in 2018 and 2019, respectively. The outcome of the study suggests that an effective method in providing sustainable production of olive groves and enhancing yield efficiency.

Loading...
Thumbnail Image
Item

Soil Moisture Measuring Techniques and Factors Affecting the Moisture Dynamics: A Comprehensive Review

2022, Rasheed, Muhammad Waseem, Tang, Jialiang, Sarwar, Abid, Shah, Suraj, Saddique, Naeem, Khan, Muhammad Usman, Imran Khan, Muhammad, Nawaz, Shah, Shamshiri, Redmond R., Aziz, Marjan, Sultan, Muhammad

The amount of surface soil moisture (SSM) is a crucial ecohydrological natural resource that regulates important land surface processes. It affects critical land–atmospheric phenomena, including the division of energy and water (infiltration, runoff, and evaporation), that impacts the effectiveness of agricultural output (sensible and latent heat fluxes and surface air temperature). Despite its significance, there are several difficulties in making precise measurements, monitoring, and interpreting SSM at high spatial and temporal resolutions. The current study critically reviews the methods and procedures for calculating SSM and the variables influencing measurement accuracy and applicability under different fields, climates, and operational conditions. For laboratory and field measurements, this study divides SSM estimate strategies into (i) direct and (ii) indirect procedures. The accuracy and applicability of a technique depends on the environment and the resources at hand. Comparative research is geographically restricted, although precise and economical—direct measuring techniques like the gravimetric method are time-consuming and destructive. In contrast, indirect methods are more expensive and do not produce measurements at the spatial scale but produce precise data on a temporal scale. While measuring SSM across more significant regions, ground-penetrating radar and remote sensing methods are susceptible to errors caused by overlapping data and atmospheric factors. On the other hand, soft computing techniques like machine/deep learning are quite handy for estimating SSM without any technical or laborious procedures. We determine that factors, e.g., topography, soil type, vegetation, climate change, groundwater level, depth of soil, etc., primarily influence the SSM measurements. Different techniques have been put into practice for various practical situations, although comparisons between them are not available frequently in publications. Each method offers a unique set of potential advantages and disadvantages. The most accurate way of identifying the best soil moisture technique is the value selection method (VSM). The neutron probe is preferable to the FDR or TDR sensor for measuring soil moisture. Remote sensing techniques have filled the need for large-scale, highly spatiotemporal soil moisture monitoring. Through self-learning capabilities in data-scarce areas, machine/deep learning approaches facilitate soil moisture measurement and prediction.