Search Results

Now showing 1 - 2 of 2
  • Item
    The 2019 surface acoustic waves roadmap
    (Bristol : IOP Publ., 2019) Delsing, Per; Cleland, Andrew N.; Schuetz, Martin J.A.; Knörzer, Johannes; Giedke, Géza; Cirac, J. Ignacio; Srinivasan, Kartik; Wu, Marcelo; Balram, Krishna Coimbatore; Bäuerle, Christopher; Meunier, Tristan; Ford, Christopher J.B.; Santos, Paulo V.; Cerda-Méndez, Edgar; Wang, Hailin; Krenner, Hubert J.; Nysten, Emeline D.S.; Weiß, Matthias; Nash, Geoff R.; Thevenard, Laura; Gourdon, Catherine; Rovillain, Pauline; Marangolo, Max; Duquesne, Jean-Yves; Fischerauer, Gerhard; Ruile, Werner; Reiner, Alexander; Paschke, Ben; Denysenko, Dmytro; Volkmer, Dirk; Wixforth, Achim; Bruus, Henrik; Wiklund, Martin; Reboud, Julien; Cooper, Jonathan M.; Fu, YongQing; Brugger, Manuel S.; Rehfeldt, Florian; Westerhausen, Christoph
    Today, surface acoustic waves (SAWs) and bulk acoustic waves are already two of the very few phononic technologies of industrial relevance and can been found in a myriad of devices employing these nanoscale earthquakes on a chip. Acoustic radio frequency filters, for instance, are integral parts of wireless devices. SAWs in particular find applications in life sciences and microfluidics for sensing and mixing of tiny amounts of liquids. In addition to this continuously growing number of applications, SAWs are ideally suited to probe and control elementary excitations in condensed matter at the limit of single quantum excitations. Even collective excitations, classical or quantum are nowadays coherently interfaced by SAWs. This wide, highly diverse, interdisciplinary and continuously expanding spectrum literally unites advanced sensing and manipulation applications. Remarkably, SAW technology is inherently multiscale and spans from single atomic or nanoscopic units up even to the millimeter scale. The aim of this Roadmap is to present a snapshot of the present state of surface acoustic wave science and technology in 2019 and provide an opinion on the challenges and opportunities that the future holds from a group of renown experts, covering the interdisciplinary key areas, ranging from fundamental quantum effects to practical applications of acoustic devices in life science. © 2019 IOP Publishing Ltd.
  • Item
    Sound-driven single-electron transfer in a circuit of coupled quantum rails
    ([London] : Nature Publishing Group UK, 2019) Takada, Shintaro; Edlbauer, Hermann; Lepage, Hugo V.; Wang, Junliang; Mortemousque, Pierre-André; Georgiou, Giorgos; Barnes, Crispin H. W.; Ford, Christopher J. B.; Yuan, Mingyun; Santos, Paulo V.; Waintal, Xavier; Ludwig, Arne; Wieck, Andreas D.; Urdampilleta, Matias; Meunier, Tristan; Bäuerle, Christopher
    Surface acoustic waves (SAWs) strongly modulate the shallow electric potential in piezoelectric materials. In semiconductor heterostructures such as GaAs/AlGaAs, SAWs can thus be employed to transfer individual electrons between distant quantum dots. This transfer mechanism makes SAW technologies a promising candidate to convey quantum information through a circuit of quantum logic gates. Here we present two essential building blocks of such a SAW-driven quantum circuit. First, we implement a directional coupler allowing to partition a flying electron arbitrarily into two paths of transportation. Second, we demonstrate a triggered single-electron source enabling synchronisation of the SAW-driven sending process. Exceeding a single-shot transfer efficiency of 99%, we show that a SAW-driven integrated circuit is feasible with single electrons on a large scale. Our results pave the way to perform quantum logic operations with flying electron qubits. © 2019, The Author(s).