Search Results

Now showing 1 - 2 of 2
  • Item
    Importance of secondary organic aerosol formation of iα/i-pinene, limonene, and im/i-cresol comparing day- And nighttime radical chemistry
    (Katlenburg-Lindau : European Geosciences Union, 2021) Mutzel, Anke; Zhang, Yanli; Böge, Olaf; Rodigast, Maria; Kolodziejczyk, Agata; Wang, Xinming; Herrmann, Hartmut
    The oxidation of biogenic and anthropogenic compounds leads to the formation of secondary organic aerosol mass (SOA). The present study aims to investigate span classCombining double low line"inline-formula"iα/i/span-pinene, limonene, and span classCombining double low line"inline-formula"im/i/span-cresol with regards to their SOA formation potential dependent on relative humidity (RH) under night- (NOspan classCombining double low line"inline-formula"3/span radicals) and daytime conditions (OH radicals) and the resulting chemical composition. It was found that SOA formation potential of limonene with NOspan classCombining double low line"inline-formula"3/span under dry conditions significantly exceeds that of the OH-radical reaction, with SOA yields of 15-30 % and 10-21 %, respectively. Additionally, the nocturnal SOA yield was found to be very sensitive towards RH, yielding more SOA under dry conditions. In contrast, the SOA formation potential of span classCombining double low line"inline-formula"iα/i/span-pinene with NOspan classCombining double low line"inline-formula"3/span slightly exceeds that of the OH-radical reaction, independent from RH. On average, span classCombining double low line"inline-formula"iα/i/span-pinene yielded SOA with about 6-7 % from NOspan classCombining double low line"inline-formula"3/span radicals and 3-4 % from OH-radical reaction. Surprisingly, unexpectedly high SOA yields were found for span classCombining double low line"inline-formula"im/i/span-cresol oxidation with OH radicals (3-9 %), with the highest yield under elevated RH (9 %), which is most likely attributable to a higher fraction of 3-methyl-6-nitro-catechol (MNC). While span classCombining double low line"inline-formula"iα/i/span-pinene and span classCombining double low line"inline-formula"im/i/span-cresol SOA was found to be mainly composed of water-soluble compounds, 50-68 % of nocturnal SOA and 22-39 % of daytime limonene SOA are water-insoluble. The fraction of SOA-bound peroxides which originated from span classCombining double low line"inline-formula"iα/i/span-pinene varied between 2 and 80 % as a function of RH./p pFurthermore, SOA from span classCombining double low line"inline-formula"iα/i/span-pinene revealed pinonic acid as the most important particle-phase constituent under day- and nighttime conditions with a fraction of 1-4 %. Other compounds detected are norpinonic acid (0.05-1.1 % mass fraction), terpenylic acid (0.1-1.1 % mass fraction), pinic acid (0.1-1.8 % mass fraction), and 3-methyl-1,2,3-tricarboxylic acid (0.05-0.5 % mass fraction). All marker compounds showed higher fractions under dry conditions when formed during daytime and showed almost no RH effect when formed during night./p © 2021 Copernicus GmbH. All rights reserved.
  • Item
    Effect of varying experimental conditions on the viscosity of α-pinene derived secondary organic material
    (München : European Geopyhsical Union, 2016) Grayson, James W.; Zhang, Yue; Mutzel, Anke; Renbaum-Wolff, Lindsay; Böge, Olaf; Kamal, Saeid; Herrmann, Hartmut; Martin, Scot T.; Bertram, Allan K.
    Knowledge of the viscosity of particles containing secondary organic material (SOM) is useful for predicting reaction rates and diffusion in SOM particles. In this study we investigate the viscosity of SOM particles as a function of relative humidity and SOM particle mass concentration, during SOM synthesis. The SOM was generated via the ozonolysis of α-pinene at < 5 % relative humidity (RH). Experiments were carried out using the poke-and-flow technique, which measures the experimental flow time (τexp, flow) of SOM after poking the material with a needle. In the first set of experiments, we show that τexp, flow increased by a factor of 3600 as the RH increased from < 0.5 RH to 50 % RH, for SOM with a production mass concentration of 121 µg m−3. Based on simulations, the viscosities of the particles were between 6  ×  105 and 5  ×  107 Pa s at < 0.5 % RH and between 3  ×  102 and 9  ×  103 Pa s at 50 % RH. In the second set of experiments we show that under dry conditions τexp, flow decreased by a factor of 45 as the production mass concentration increased from 121 to 14 000 µg m−3. From simulations of the poke-and-flow experiments, the viscosity of SOM with a production mass concentration of 14 000 µg m−3 was determined to be between 4  ×  104 and 1.5  ×  106 Pa s compared to between 6  ×  105 and 5  ×  107 Pa s for SOM with a production mass concentration of 121 µg m−3. The results can be rationalized by a dependence of the chemical composition of SOM on production conditions. These results emphasize the shifting characteristics of SOM, not just with RH and precursor type, but also with the production conditions, and suggest that production mass concentration and the RH at which the viscosity was determined should be considered both when comparing laboratory results and when extrapolating these results to the atmosphere.