Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Towards multiple readout application of plasmonic arrays

2011, Cialla, D., Weber, K., Böhme, R., Hübner, U., Schneidewind, H., Zeisberger, M., Mattheis, R., Möller, R., Popp, J.

In order to combine the advantages of fluorescence and surface-enhanced Raman spectroscopy (SERS) on the same chip platform, a nanostructured gold surface with a unique design, allowing both the sensitive detection of fluorescence light together with the specific Raman fingerprint of the fluorescent molecules, was established. This task requires the fabrication of plasmonic arrays that permit the binding of molecules of interest at different distances from the metallic surface. The most efficient SERS enhancement is achieved for molecules directly adsorbed on the metallic surface due to the strong field enhancement, but where, however, the fluorescence is quenched most efficiently. Furthermore, the fluorescence can be enhanced efficiently by careful adjustment of the optical behavior of the plasmonic arrays. In this article, the simultaneous application of SERS and fluorescence, through the use of various gold nanostructured arrays, is demonstrated by the realization of a DNA detection scheme. The results shown open the way to more flexible use of plasmonic arrays in bioanalytics.

Loading...
Thumbnail Image
Item

Laser-induced backside wet etching of transparent materials with organic and metallic absorbers

2008, Zimmer, K., Böhme, R.

Laser-induced backside wet etching (LIBWE) allows the high-quality etching of transparent materials for micro- and nanopatterning. Recent own results of LIBWE with hydrocarbon and metallic absorbers (H- and M-LIBWE) are summarized and compared with selected results of other groups regarding the etching process and the etched surface. Significant results on the impact of the liquid absorber, the material and the wavelength, and the pulse length of the laser to the etching are selected for this comparison. The etching of submicron-sized periodic structures in sapphire and fused silica with interference techniques and the selection of the preferred method in dependence on the material and the processing goal discussed. The experimental results are discussed on a thermal model considering both interface and volume absorption of the laser beam. These results have the conclusion that the etching at M-LIBWE is mainly due to material melting and evaporation whereas at H-LIBWE, a modified near-surface region with a very high absorption is ablated.