Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Single Molecule Magnetism with Strong Magnetic Anisotropy and Enhanced Dy∙∙∙Dy Coupling in Three Isomers of Dy-Oxide Clusterfullerene Dy2O@C82

2019, Yang, W., Velkos, G., Liu, F., Sudarkova, S.M., Wang, Y., Zhuang, J., Zhang, H., Li, X., Zhang, X., Büchner, B., Avdoshenko, S.M., Popov, A.A., Chen, N.

A new class of single-molecule magnets (SMMs) based on Dy-oxide clusterfullerenes is synthesized. Three isomers of Dy2O@C82 with Cs(6), C3v(8), and C2v(9) cage symmetries are characterized by single-crystal X-ray diffraction, which shows that the endohedral Dy−(µ2-O)−Dy cluster has bent shape with very short Dy−O bonds. Dy2O@C82 isomers show SMM behavior with broad magnetic hysteresis, but the temperature and magnetization relaxation depend strongly on the fullerene cage. The short Dy−O distances and the large negative charge of the oxide ion in Dy2O@C82 result in the very strong magnetic anisotropy of Dy ions. Their magnetic moments are aligned along the Dy−O bonds and are antiferromagnetically (AFM) coupled. At low temperatures, relaxation of magnetization in Dy2O@C82 proceeds via the ferromagnetically (FM)-coupled excited state, giving Arrhenius behavior with the effective barriers equal to the AFM-FM energy difference. The AFM-FM energy differences of 5.4–12.9 cm−1 in Dy2O@C82 are considerably larger than in SMMs with {Dy2O2} bridges, and the Dy∙∙∙Dy exchange coupling in Dy2O@C82 is the strongest among all dinuclear Dy SMMs with diamagnetic bridges. Dy-oxide clusterfullerenes provide a playground for the further tuning of molecular magnetism via variation of the size and shape of the fullerene cage.

Loading...
Thumbnail Image
Item

Air-stable redox-active nanomagnets with lanthanide spins radical-bridged by a metal–metal bond

2019, Liu, F., Velkos, G., Krylov, D.S., Spree, L., Zalibera, M., Ray, R., Samoylova, N.A., Chen, C.-H., Rosenkranz, M., Schiemenz, S., Ziegs, F., Nenkov, K., Kostanyan, A., Greber, T., Wolter, A.U.B., Richter, M., Büchner, B., Avdoshenko, S.M., Popov, A.A.

Engineering intramolecular exchange interactions between magnetic metal atoms is a ubiquitous strategy for designing molecular magnets. For lanthanides, the localized nature of 4f electrons usually results in weak exchange coupling. Mediating magnetic interactions between lanthanide ions via radical bridges is a fruitful strategy towards stronger coupling. In this work we explore the limiting case when the role of a radical bridge is played by a single unpaired electron. We synthesize an array of air-stable Ln 2 @C 80 (CH 2 Ph) dimetallofullerenes (Ln 2 = Y 2 , Gd 2 , Tb 2 , Dy 2 , Ho 2 , Er 2 , TbY, TbGd) featuring a covalent lanthanide-lanthanide bond. The lanthanide spins are glued together by very strong exchange interactions between 4f moments and a single electron residing on the metal–metal bonding orbital. Tb 2 @C 80 (CH 2 Ph) shows a gigantic coercivity of 8.2 Tesla at 5 K and a high 100-s blocking temperature of magnetization of 25.2 K. The Ln-Ln bonding orbital in Ln 2 @C 80 (CH 2 Ph) is redox active, enabling electrochemical tuning of the magnetism.

Loading...
Thumbnail Image
Item

Single molecule magnet with an unpaired electron trapped between two lanthanide ions inside a fullerene

2017, Liu, F., Krylov, D.S., Spree, L., Avdoshenko, S.M., Samoylova, N.A., Rosenkranz, M., Kostanyan, A., Greber, T., Wolter, A.U.B., Büchner, B., Popov, A.A.

Increasing the temperature at which molecules behave as single-molecule magnets is a serious challenge in molecular magnetism. One of the ways to address this problem is to create the molecules with strongly coupled lanthanide ions. In this work, endohedral metallofullerenes Y 2 @C 80 and Dy 2 @C 80 are obtained in the form of air-stable benzyl monoadducts. Both feature an unpaired electron trapped between metal ions, thus forming a single-electron metal-metal bond. Giant exchange interactions between lanthanide ions and the unpaired electron result in single-molecule magnetism of Dy 2 @C 80 (CH 2 Ph) with a record-high 100 s blocking temperature of 18 K. All magnetic moments in Dy 2 @C 80 (CH 2 Ph) are parallel and couple ferromagnetically to form a single spin unit of 21 μ B with a dysprosium-electron exchange constant of 32 cm -1. The barrier of the magnetization reversal of 613 K is assigned to the state in which the spin of one Dy centre is flipped.