Search Results

Now showing 1 - 10 of 16
  • Item
    Momentum dependent dxz/yz band splitting in LaFeAsO
    (Berlin : Springer Nature, 2020) Huh, S.S.; Kim, Y.S.; Kyung, W.S.; Jung, J.K.; Kappenberger, R.; Aswartham, S.; Büchner, B.; Ok, J.M.; Kim, J.S.; Dong, C.; Hu, J.P.; Cho, S.H.; Shen, D.W.; Denlinger, J.D.; Kim, Y.K.; Kim, C.
    The nematic phase in iron based superconductors (IBSs) has attracted attention with a notion that it may provide important clue to the superconductivity. A series of angle-resolved photoemission spectroscopy (ARPES) studies were performed to understand the origin of the nematic phase. However, there is lack of ARPES study on LaFeAsO nematic phase. Here, we report the results of ARPES studies of the nematic phase in LaFeAsO. Degeneracy breaking between the dxz and dyz hole bands near the Γ and M point is observed in the nematic phase. Different temperature dependent band splitting behaviors are observed at the Γ and M points. The energy of the band splitting near the M point decreases as the temperature decreases while it has little temperature dependence near the Γ point. The nematic nature of the band shift near the M point is confirmed through a detwin experiment using a piezo device. Since a momentum dependent splitting behavior has been observed in other iron based superconductors, our observation confirms that the behavior is a universal one among iron based superconductors.
  • Item
    Coupling of lattice, spin, and intraconfigurational excitations of Eu3+ in Eu2ZnIrO6
    (Washington, DC : American Association for the Advancement of Science, 2020) Singh, Birender; Vogl, M.; Wurmehl, S.; Aswartham, S.; Büchner, B.; Kumar, Pradeep
    In Eu2ZnIrO6, effectively two atoms are active; i.e., Ir is magnetically active, which results in complex magnetic ordering within the Ir sublattice at low temperature. On the other hand, although Eu is a Van Vleck paramagnet, it is active in the electronic channels involving 4f6 crystal-field split levels. Phonons, quanta of lattice vibration involving vibration of atoms in the unit cell, are intimately coupled with both magnetic and electronic degrees of freedom (DOF). Here, we report a comprehensive study focusing on the phonons as well as intraconfigurational excitations in double-perovskite Eu2ZnIrO6. Our studies reveal strong coupling of phonons with the underlying magnetic DOF reflected in the renormalization of the phonon self-energy parameters well above the spin-solid phase (TN∼12K) until temperature as high as ∼3TN evidences broken spin rotational symmetry deep into the paramagnetic phase. In particular, all the observed first-order phonon modes show softening of varying degree below ∼3TN, and low-frequency phonons become sharper, while the high-frequency phonons show broadening attributed to the additional available magnetic damping channels. We also observed a large number of high-energy modes, 39 in total, attributed to the electronic transitions between 4f levels of the rare-earth Eu3+ ion and these modes shows anomalous temperature evolution as well as mixing of the crystal-field split levels attributed to the strong coupling of electronic and lattice DOF.
  • Item
    Spectromicroscopic measurements of electronic structure variations in atomically thin WSe2
    (2020) Klaproth, T.; Habenicht, C.; Schuster, R.; Büchner, B.; Knupfer, M.; Koitzsch, A.
    Atomically thin transition metal dichalcogenides (TMDCs) are promising candidates for implementation in next generation semiconducting devices, for which laterally homogeneous behavior is needed. Here, we study the electronic structure of atomically thin exfoliated WSe2, a prototypical TMDC with large spin–orbit coupling, by photoemission electron microscopy, electron energy-loss spectroscopy, and density functional theory. We resolve the inhomogeneities of the doping level by the varying energy positions of the valence band. There appear to be different types of inhomogeneities that respond differently to electron doping, introduced by potassium intercalation. In addition, we find that the doping process itself is more complex than previously anticipated and entails a distinct orbital and thickness dependence that needs to be considered for effective band engineering. In particular, the density of selenium vs tungsten states depends on the doping level, which leads to changes in the optical response beyond increased dielectric screening. Our work gives insight into the inhomogeneity of the electron structure of WSe2 and the effects of electron doping, provides microscopic understanding thereof, and improves the basis for property engineering of 2D materials.
  • Item
    Shape-adaptive single-molecule magnetism and hysteresis up to 14 K in oxide clusterfullerenes Dy2O@C72 and Dy2O@C74 with fused pentagon pairs and flexible Dy-(μ2-O)-Dy angle
    (Cambridge : Royal Society of Chemistry, 2020) Velkos, G.; Yang, W.; Yao, Y.-R.; Sudarkova, S.M.; Liu, X.; Büchner, B.; Avdoshenko, S.M.; Chen, N.; Popov, A.A.
    Dysprosium oxide clusterfullerenes Dy2O@Cs(10528)-C72 and Dy2O@C2(13333)-C74 are synthesized and characterized by single-crystal X-ray diffraction. Carbon cages of both molecules feature two adjacent pentagon pairs. These pentalene units determine positions of endohedral Dy ions hence the shape of the Dy2O cluster, which is bent in Dy2O@C72 but linear in Dy2O@C74. Both compounds show slow relaxation of magnetization and magnetic hysteresis. Nearly complete cancelation of ferromagnetic dipolar and antiferromagnetic exchange Dy⋯Dy interactions leads to unusual magnetic properties. Dy2O@C74 exhibits zero-field quantum tunneling of magnetization and magnetic hysteresis up to 14 K, the highest temperature among Dy-clusterfullerenes.
  • Item
    All-on-Chip Concurrent Measurements of the Static Magnetization and of the Electron Spin Resonance with Microcantilevers
    (Wien [u.a.] : Springer, 2021) Alfonsov, A.; Büchner, B.; Kataev, V.
    A large variety of the samples of novel magnetic materials, which are of high interest due to their exotic properties, are only available in very small sizes. In some cases, it is not possible to synthesize large single crystals; in other cases, the small size itself is the key prerequisite to manifest a specifically interesting property of the material. The smallness of a sample rises a problem of the detection of the static magnetic response and of the electron spin resonance (ESR) signal. To overcome this problem, we propose to use a cantilever-based (torque-detected) setup with the capability of a simultaneous measurement of ESR and static magnetization. This setup offers a high sensitivity and the ability to acquire along with the ESR signal the components of the magnetization tensor in a single experimental run. Here, we present the working principle of this setup, as well as the estimate of its sensitivity from the measurements on the standard Co Tutton salt sample. © 2021, The Author(s).
  • Item
    Impact of Mn-Pn intermixing on magnetic properties of an intrinsic magnetic topological insulator: the µSR perspective
    (Bristol : IOP Publ., 2023) Sahoo, M.; Salman, Z.; Allodi, G.; Isaeva, A.; Folkers, L.; Wolter, A.U.B.; Büchner, B.; De Renzi, R.
    We investigated the magnetic properties of polycrystalline samples of the intrinsic magnetic topological insulators MnPn2Te4, with pnictogen Pn = Sb, Bi, by bulk magnetization and μSR. DC susceptibility detects the onset of magnetic ordering at TN = 27 K and 24 K and a field dependence of the macroscopic magnetization compatible with ferri- (or ferro-) and atiferro- magnetic ordering, respectively. Weak transverse field (wTF) Muon Spin Rotation (μSR) confirms the homogeneous bulk nature of magnetic ordering at the same two distinct transition temperatures. Zero Field (ZF) μSR shows that the Sb based material displays a broader distribution of internal field at the muon, in accordance with a larger deviation from the stoichiomectric composition and a higher degree of positional disorder (Mn at the Pn(6c) site), which however does not affect significantly the sharpness of the thermodynamic transition, as detected by the muon magnetic volume fraction and the observability of a critical divergence in the longitudinal and transverse muon relaxation rates.
  • Item
    Two-dimensional ferromagnetic extension of a topological insulator
    (College Park, MD : APS, 2023) Kagerer, P.; Fornari, C. I.; Buchberger, S.; Tschirner, T.; Veyrat, L.; Kamp, M.; Tcakaev, A. V.; Zabolotnyy, V.; Morelhão, S. L.; Geldiyev, B.; Müller, S.; Fedorov, A.; Rienks, E.; Gargiani, P.; Valvidares, M.; Folkers, L. C.; Isaeva, A.; Büchner, B.; Hinkov, V.; Claessen, R.; Bentmann, H.; Reinert, F.
    Inducing a magnetic gap at the Dirac point of the topological surface state (TSS) in a three-dimensional (3D) topological insulator (TI) is a route to dissipationless charge and spin currents. Ideally, magnetic order is present only at the surface, as through proximity of a ferromagnetic (FM) layer. However, experimental evidence of such a proximity-induced Dirac mass gap is missing, likely due to an insufficient overlap of TSS and the FM subsystem. Here, we take a different approach, namely ferromagnetic extension (FME), using a thin film of the 3D TI Bi2Te3, interfaced with a monolayer of the lattice-matched van der Waals ferromagnet MnBi2Te4. Robust 2D ferromagnetism with out-of-plane anisotropy and a critical temperature of Tc≈15 K is demonstrated by x-ray magnetic dichroism and electrical transport measurements. Using angle-resolved photoelectron spectroscopy, we observe the opening of a sizable magnetic gap in the 2D FM phase, while the surface remains gapless in the paramagnetic phase above Tc. Ferromagnetic extension paves the way to explore the interplay of strictly 2D magnetism and topological surface states, providing perspectives for realizing robust quantum anomalous Hall and chiral Majorana states.
  • Item
    Strong effects of uniaxial pressure and short-range correlations in Cr2Ge2Te6
    (College Park, MD : APS, 2022) Spachmann, S.; Elghandour, A.; Selter, S.; Büchner, B.; Aswartham, S.; Klingeler, R.
    Cr2Ge2Te6 is a quasi-two-dimensional semiconducting van der Waals ferromagnet down to the bilayer with great potential for technological applications. Engineering the critical temperature to achieve room-temperature applications is one of the critical next steps on this path. Here, we report high-resolution capacitance dilatometry studies on Cr2Ge2Te6 single crystals which directly prove significant magnetoelastic coupling and provide quantitative values of the large uniaxial pressure effects on long-range magnetic order (∂TC/∂pc=24.7 K/GPa and ∂TC/∂pab=−15.6 K/GPa) derived from thermodynamic relations. Moderate in-plane strain is thus sufficient to strongly enhance ferromagnetism in Cr2Ge2Te6 up to room temperature. Moreover, unambiguous signs of short-range magnetic order up to 200 K are found.
  • Item
    Tailoring electron beams with high-frequency self-assembled magnetic charged particle micro optics
    ([London] : Nature Publishing Group UK, 2022) Huber, R.; Kern, F.; Karnaushenko, D.D.; Eisner, E.; Lepucki, P.; Thampi, A.; Mirhajivarzaneh, A.; Becker, C.; Kang, T.; Baunack, S.; Büchner, B.; Karnaushenko, D.; Schmidt, O.G.; Lubk, A.
    Tunable electromagnets and corresponding devices, such as magnetic lenses or stigmators, are the backbone of high-energy charged particle optical instruments, such as electron microscopes, because they provide higher optical power, stability, and lower aberrations compared to their electric counterparts. However, electromagnets are typically macroscopic (super-)conducting coils, which cannot generate swiftly changing magnetic fields, require active cooling, and are structurally bulky, making them unsuitable for fast beam manipulation, multibeam instruments, and miniaturized applications. Here, we present an on-chip microsized magnetic charged particle optics realized via a self-assembling micro-origami process. These micro-electromagnets can generate alternating magnetic fields of about ±100 mT up to a hundred MHz, supplying sufficiently large optical power for a large number of charged particle optics applications. That particular includes fast spatiotemporal electron beam modulation such as electron beam deflection, focusing, and wave front shaping as required for stroboscopic imaging.
  • Item
    Separate tuning of nematicity and spin fluctuations to unravel the origin of superconductivity in FeSe
    (London : Nature Publishing Group, 2020) Baek, S.-H.; Ok, J.M.; Kim, J.S.; Aswartham, S.; Morozov, I.; Chareev, D.; Urata, T.; Tanigaki, K.; Tanabe, Y.; Büchner, B.; Efremov, D.V.
    The interplay of orbital and spin degrees of freedom is the fundamental characteristic in numerous condensed matter phenomena, including high-temperature superconductivity, quantum spin liquids, and topological semimetals. In iron-based superconductors (FeSCs), this causes superconductivity to emerge in the vicinity of two other instabilities: nematic and magnetic. Unveiling the mutual relationship among nematic order, spin fluctuations, and superconductivity has been a major challenge for research in FeSCs, but it is still controversial. Here, by carrying out 77Se nuclear magnetic resonance (NMR) measurements on FeSe single crystals, doped by cobalt and sulfur that serve as control parameters, we demonstrate that the superconducting transition temperature Tc increases in proportion to the strength of spin fluctuations, while it is independent of the nematic transition temperature Tnem. Our observation therefore directly implies that superconductivity in FeSe is essentially driven by spin fluctuations in the intermediate coupling regime, while nematic fluctuations have a marginal impact on Tc.