Search Results

Now showing 1 - 10 of 13
Loading...
Thumbnail Image
Item

Pressure-induced dimerization and valence bond crystal formation in the Kitaev-Heisenberg magnet α-RuCl3

2018, Bastien, G., Garbarino, G., Yadav, R., Martinez-Casado, F.J., Beltrán, Rodríguez, R., Stahl, Q., Kusch, M., Limandri, S.P., Ray, R., Lampen-Kelley, P., Mandrus, D.G., Nagler, S.E., Roslova, M., Isaeva, A., Doert, T., Hozoi, L., Wolter, A.U.B., Büchner, B., Geck, J., Van Den Brink, J.

Magnetization and high-resolution x-ray diffraction measurements of the Kitaev-Heisenberg material α-RuCl3 reveal a pressure-induced crystallographic and magnetic phase transition at a hydrostatic pressure of p∼0.2 GPa. This structural transition into a triclinic phase is characterized by a very strong dimerization of the Ru-Ru bonds, accompanied by a collapse of the magnetic susceptibility. Ab initio quantum-chemistry calculations disclose a pressure-induced enhancement of the direct 4d-4d bonding on particular Ru-Ru links, causing a sharp increase of the antiferromagnetic exchange interactions. These combined experimental and computational data show that the Kitaev spin-liquid phase in α-RuCl3 strongly competes with the crystallization of spin singlets into a valence bond solid.

Loading...
Thumbnail Image
Item

Fe1-xNix alloy nanoparticles encapsulated inside carbon nanotubes: Controlled synthesis, structure and magnetic properties

2018, Ghunaim, R., Damm, C., Wolf, D., Lubk, A., Büchner, B., Mertig, M., Hampel, S.

In the present work, different synthesis procedures have been demonstrated to fill carbon nanotubes (CNTs) with Fe1-xNix alloy nanoparticles (x = 0.33, 0.5). CNTs act as templates for the encapsulation of magnetic nanoparticles, and provide a protective shield against oxidation as well as prevent nanoparticles agglomeration. By variation of the reaction parameters, the purity of the samples, degree of filling, the composition and size of filling nanoparticles have been tailored and therefore the magnetic properties. The samples were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Bright-field (BF) TEM tomography, X-ray powder diffraction, superconducting quantum interference device (SQUID) and thermogravimetric analysis (TGA). The Fe1-x Nix-filled CNTs show a huge enhancement in the coercive fields compared to the corresponding bulk materials, which make them excellent candidates for several applications such as magnetic storage devices.

Loading...
Thumbnail Image
Item

Probing the reconstructed Fermi surface of antiferromagnetic BaFe2As2 in one domain

2019, Watson, M.D., Dudin, P., Rhodes, L.C., Evtushinsky, D.V., Iwasawa, H., Aswartham, S., Wurmehl, S., Büchner, B., Hoesch, M., Kim, T.K.

A fundamental part of the puzzle of unconventional superconductivity in the Fe-based superconductors is the understanding of the magnetic and nematic instabilities of the parent compounds. The issues of which of these can be considered the leading instability, and whether weak- or strong-coupling approaches are applicable, are both critical and contentious. Here, we revisit the electronic structure of BaFe2As2 using angle-resolved photoemission spectroscopy (ARPES). Our high-resolution measurements of samples “detwinned” by the application of a mechanical strain reveal a highly anisotropic 3D Fermi surface in the low-temperature antiferromagnetic phase. By comparison of the observed dispersions with ab initio calculations, we argue that overall it is magnetism, rather than orbital/nematic ordering, which is the dominant effect, reconstructing the electronic structure across the Fe 3d bandwidth. Finally, using a state-of-the-art nano-ARPES system, we reveal how the observed electronic dispersions vary in real space as the beam spot crosses domain boundaries in an unstrained sample, enabling the measurement of ARPES data from within single antiferromagnetic domains, and showing consistence with the effective mono-domain samples obtained by detwinning.

Loading...
Thumbnail Image
Item

Tuning the interplay between nematicity and spin fluctuations in Na1-x Li x FeAs superconductors

2018, Baek, S.-H., Bhoi, D., Nam, W., Lee, B., Efremov, D.V., Büchner, B., Kim, K.H.

Strong interplay of spin and charge/orbital degrees of freedom is the fundamental characteristic of the iron-based superconductors (FeSCs), which leads to the emergence of a nematic state as a rule in the vicinity of the antiferromagnetic state. Despite intense debate for many years, however, whether nematicity is driven by spin or orbital fluctuations remains unsettled. Here, by use of transport, magnetization, and 75As nuclear magnetic resonance (NMR) measurements, we show a striking transformation of the relationship between nematicity and spin fluctuations (SFs) in Na1-x Li x FeAs; For x ≤ 0.02, the nematic transition promotes SFs. In contrast, for x ≥ 0.03, the system undergoes a non-magnetic phase transition at a temperature T 0 into a distinct nematic state that suppresses SFs. Such a drastic change of the spin fluctuation spectrum associated with nematicity by small doping is highly unusual, and provides insights into the origin and nature of nematicity in FeSCs.

Loading...
Thumbnail Image
Item

Single molecule magnet with an unpaired electron trapped between two lanthanide ions inside a fullerene

2017, Liu, F., Krylov, D.S., Spree, L., Avdoshenko, S.M., Samoylova, N.A., Rosenkranz, M., Kostanyan, A., Greber, T., Wolter, A.U.B., Büchner, B., Popov, A.A.

Increasing the temperature at which molecules behave as single-molecule magnets is a serious challenge in molecular magnetism. One of the ways to address this problem is to create the molecules with strongly coupled lanthanide ions. In this work, endohedral metallofullerenes Y 2 @C 80 and Dy 2 @C 80 are obtained in the form of air-stable benzyl monoadducts. Both feature an unpaired electron trapped between metal ions, thus forming a single-electron metal-metal bond. Giant exchange interactions between lanthanide ions and the unpaired electron result in single-molecule magnetism of Dy 2 @C 80 (CH 2 Ph) with a record-high 100 s blocking temperature of 18 K. All magnetic moments in Dy 2 @C 80 (CH 2 Ph) are parallel and couple ferromagnetically to form a single spin unit of 21 μ B with a dysprosium-electron exchange constant of 32 cm -1. The barrier of the magnetization reversal of 613 K is assigned to the state in which the spin of one Dy centre is flipped.

Loading...
Thumbnail Image
Item

Separate tuning of nematicity and spin fluctuations to unravel the origin of superconductivity in FeSe

2020, Baek, S.-H., Ok, J.M., Kim, J.S., Aswartham, S., Morozov, I., Chareev, D., Urata, T., Tanigaki, K., Tanabe, Y., Büchner, B., Efremov, D.V.

The interplay of orbital and spin degrees of freedom is the fundamental characteristic in numerous condensed matter phenomena, including high-temperature superconductivity, quantum spin liquids, and topological semimetals. In iron-based superconductors (FeSCs), this causes superconductivity to emerge in the vicinity of two other instabilities: nematic and magnetic. Unveiling the mutual relationship among nematic order, spin fluctuations, and superconductivity has been a major challenge for research in FeSCs, but it is still controversial. Here, by carrying out 77Se nuclear magnetic resonance (NMR) measurements on FeSe single crystals, doped by cobalt and sulfur that serve as control parameters, we demonstrate that the superconducting transition temperature Tc increases in proportion to the strength of spin fluctuations, while it is independent of the nematic transition temperature Tnem. Our observation therefore directly implies that superconductivity in FeSe is essentially driven by spin fluctuations in the intermediate coupling regime, while nematic fluctuations have a marginal impact on Tc.

Loading...
Thumbnail Image
Item

Nonlocal dielectric function and nested dark excitons in MoS2

2019, Koitzsch, A., Pawlik, A.-S., Habenicht, C., Klaproth, T., Schuster, R., Büchner, B., Knupfer, M.

Their exceptional optical properties are a driving force for the persistent interest in atomically thin transition metal dichalcogenides such as MoS2. The optical response is dominated by excitons. Apart from the bright excitons, which directly couple to light, it has been realized that dark excitons, where photon absorption or emission is inhibited by the spin state or momentum mismatch, are decisive for many optical properties. However, in particular the momentum dependence is difficult to assess experimentally and often remains elusive or is investigated by indirect means. Here we study the momentum dependent electronic structure experimentally and theoretically. We use angle-resolved photoemission as a one-particle probe of the occupied valence band structure and electron energy loss spectroscopy as a two-particle probe of electronic transitions across the gap to benchmark a single-particle model of the dielectric function ϵ(q, ω) against momentum dependent experimental measurements. This ansatz captures key aspects of the data surprisingly well. In particular, the energy region where substantial nesting occurs, which is at the origin of the strong light–matter interaction of thin transition metal dichalcogenides and crucial for the prominent C-exciton, is described well and spans a more complex exciton landscape than previously anticipated. Its local maxima in (q≠0,ω) space can be considered as dark excitons and might be relevant for higher order optical processes. Our study may lead to a more complete understanding of the optical properties of atomically thin transition metal dichalcogenides.

Loading...
Thumbnail Image
Item

Spectral field mapping in plasmonic nanostructures with nanometer resolution

2018, Krehl, J., Guzzinati, G., Schultz, J., Potapov, P., Pohl, D., Martin, J., Verbeeck, J., Fery, A., Büchner, B., Lubk, A.

Plasmonic nanostructures and -devices are rapidly transforming light manipulation technology by allowing to modify and enhance optical fields on sub-wavelength scales. Advances in this field rely heavily on the development of new characterization methods for the fundamental nanoscale interactions. However, the direct and quantitative mapping of transient electric and magnetic fields characterizing the plasmonic coupling has been proven elusive to date. Here we demonstrate how to directly measure the inelastic momentum transfer of surface plasmon modes via the energy-loss filtered deflection of a focused electron beam in a transmission electron microscope. By scanning the beam over the sample we obtain a spatially and spectrally resolved deflection map and we further show how this deflection is related quantitatively to the spectral component of the induced electric and magnetic fields pertaining to the mode. In some regards this technique is an extension to the established differential phase contrast into the dynamic regime. © 2018, The Author(s).

Loading...
Thumbnail Image
Item

Strong spin resonance mode associated with suppression of soft magnetic ordering in hole-doped Ba1-xNaxFe2As2

2019, Waßer, F., Park, J.T., Aswartham, S., Wurmehl, S., Sidis, Y., Steffens, P., Schmalzl, K., Büchner, B., Braden, M.

Spin-resonance modes (SRM) are taken as evidence for magnetically driven pairing in Fe-based superconductors, but their character remains poorly understood. The broadness, the splitting and the spin-space anisotropies of SRMs contrast with the mostly accepted interpretation as spin excitons. We study hole-doped Ba1−xNaxFe2As2 that displays a spin reorientation transition. This reorientation has little impact on the overall appearance of the resonance excitations with a high-energy isotropic and a low-energy anisotropic mode. However, the strength of the anisotropic low-energy mode sharply peaks at the highest doping that still exhibits magnetic ordering resulting in the strongest SRM observed in any Fe-based superconductor so far. This remarkably strong SRM is accompanied by a loss of about half of the magnetic Bragg intensity upon entering the SC phase. Anisotropic SRMs thus can allow the system to compensate for the loss of exchange energy arising from the reduced antiferromagnetic correlations within the SC state.

Loading...
Thumbnail Image
Item

Spin-glass state and reversed magnetic anisotropy induced by Cr doping in the Kitaev magnet α-RuCl3

2019, Bastien, G., Roslova, M., Haghighi, M.H., Mehlawat, K., Hunger, J., Isaeva, A., Doert, T., Vojta, M., Büchner, B., Wolter, A.U.B.

Magnetic properties of the substitution series Ru1-xCrxCl3 were investigated to determine the evolution from the anisotropic Kitaev magnet α-RuCl3 with Jeff=1/2 magnetic Ru3+ ions to the isotropic Heisenberg magnet CrCl3 with S=3/2 magnetic Cr3+ ions. Magnetization measurements on single crystals revealed a reversal of the magnetic anisotropy under doping, which we argue to arise from the competition between anisotropic Kitaev and off-diagonal interactions on the Ru-Ru links and approximately isotropic Cr-Ru and isotropic Cr-Cr interactions. In addition, combined magnetization, ac susceptibility, and specific-heat measurements clearly show the destabilization of the long-range magnetic order of α-RuCl3 in favor of a spin-glass state of Ru1-xCrxCl3 for a low doping of x≤0.1. The corresponding freezing temperature as a function of Cr content shows a broad maximum around x ≤ 0.45.