Search Results

Now showing 1 - 2 of 2
  • Item
    High-field ESR studies of the quantum spin magnet CaCu2O 3
    (Milton Park : Taylor & Francis, 2006) Goiran, M.; Costes, M.; Broto, J.M.; Chou, F.C.; Klingeler, R.; Arushanov, E.; Drechsler, S.-L.; Büchner, B.; Kataev, V.
    We report an electron spin resonance (ESR) study of the s = 1/2 Heisenberg pseudo-ladder magnet CaCu2O3 in pulsed magnetic fields up to 40 T. At sub-terahertz frequencies we observe an ESR signal originating from a small amount of uncompensated spins residing presumably at the imperfections of the strongly antiferromagnetically correlated host spin lattice. The data give evidence that these few per cent of 'extra' spin states are coupled strongly to the bulk spins and are involved in the antiferromagnetic (AF) ordering at TN = 25 K. By mapping the frequency/resonance field diagram we have determined a small gap for magnetic excitations below TN of the order of ~0.3–0.8 meV. Such a small value of the gap explains the occurrence of the spin-flop transition in CaCu2O3 at weak magnetic fields μ0Hsf ~ 3 T. Qualitative changes of the ESR response with the increasing field strength give indications that strong magnetic fields reduce the AF correlations and may even suppress the long-range magnetic order in CaCu2O3. ESR data support scenarios with a significant role of the 'extra' spin states for the properties of low-dimensional quantum magnets.
  • Item
    Optical study of orbital excitations in transition-metal oxides
    (Milton Park : Taylor & Francis, 2005) Rückamp, R.; Benckiser, E.; Haverkort, M.W.; Roth, H.; Lorenz, T.; Freimuth, A.; Jongen, L.; Möller, A.; Meyer, G.; Reutler, P.; Büchner, B.; Revcolevschi, A.; Cheong, S.-W.; Sekar, C.; Krabbes, G.; Grüninger, M.
    The orbital excitations of a series of transition-metal compounds are studied by means of optical spectroscopy. Our aim was to identify signatures of collective orbital excitations by comparison with experimental and theoretical results for predominantly local crystal-field excitations. To this end, we have studied TiOCl, RTiO3 (R = La, Sm and Y), LaMnO3, Y2BaNiO5, CaCu2O3 and K4Cu4OCl10, ranging from early to late transition-metal ions, from t2g to eg systems, and including systems in which the exchange coupling is predominantly three-dimensional, one-dimensional or zero-dimensional. With the exception of LaMnO3, we find orbital excitations in all compounds. We discuss the competition between orbital fluctuations (for dominant exchange coupling) and crystal-field splitting (for dominant coupling to the lattice). Comparison of our experimental results with configuration-interaction cluster calculations in general yields good agreement, demonstrating that the coupling to the lattice is important for a quantitative description of the orbital excitations in these compounds. However, detailed theoretical predictions for the contribution of collective orbital modes to the optical conductivity (e.g. the line shape or the polarization dependence) are required to decide on a possible contribution of orbital fluctuations at low energies, in particular, in case of the orbital excitations at ≈0.25 eV in RTiO3. Further calculations are called for which take into account the exchange interactions between the orbitals and the coupling to the lattice on an equal footing.