Search Results

Now showing 1 - 2 of 2
  • Item
    High-field ESR studies of the quantum spin magnet CaCu2O 3
    (Milton Park : Taylor & Francis, 2006) Goiran, M.; Costes, M.; Broto, J.M.; Chou, F.C.; Klingeler, R.; Arushanov, E.; Drechsler, S.-L.; Büchner, B.; Kataev, V.
    We report an electron spin resonance (ESR) study of the s = 1/2 Heisenberg pseudo-ladder magnet CaCu2O3 in pulsed magnetic fields up to 40 T. At sub-terahertz frequencies we observe an ESR signal originating from a small amount of uncompensated spins residing presumably at the imperfections of the strongly antiferromagnetically correlated host spin lattice. The data give evidence that these few per cent of 'extra' spin states are coupled strongly to the bulk spins and are involved in the antiferromagnetic (AF) ordering at TN = 25 K. By mapping the frequency/resonance field diagram we have determined a small gap for magnetic excitations below TN of the order of ~0.3–0.8 meV. Such a small value of the gap explains the occurrence of the spin-flop transition in CaCu2O3 at weak magnetic fields μ0Hsf ~ 3 T. Qualitative changes of the ESR response with the increasing field strength give indications that strong magnetic fields reduce the AF correlations and may even suppress the long-range magnetic order in CaCu2O3. ESR data support scenarios with a significant role of the 'extra' spin states for the properties of low-dimensional quantum magnets.
  • Item
    Spin-glass state and reversed magnetic anisotropy induced by Cr doping in the Kitaev magnet α-RuCl3
    (College Park, MD : American Physical Society, 2019) Bastien, G.; Roslova, M.; Haghighi, M.H.; Mehlawat, K.; Hunger, J.; Isaeva, A.; Doert, T.; Vojta, M.; Büchner, B.; Wolter, A.U.B.
    Magnetic properties of the substitution series Ru1-xCrxCl3 were investigated to determine the evolution from the anisotropic Kitaev magnet α-RuCl3 with Jeff=1/2 magnetic Ru3+ ions to the isotropic Heisenberg magnet CrCl3 with S=3/2 magnetic Cr3+ ions. Magnetization measurements on single crystals revealed a reversal of the magnetic anisotropy under doping, which we argue to arise from the competition between anisotropic Kitaev and off-diagonal interactions on the Ru-Ru links and approximately isotropic Cr-Ru and isotropic Cr-Cr interactions. In addition, combined magnetization, ac susceptibility, and specific-heat measurements clearly show the destabilization of the long-range magnetic order of α-RuCl3 in favor of a spin-glass state of Ru1-xCrxCl3 for a low doping of x≤0.1. The corresponding freezing temperature as a function of Cr content shows a broad maximum around x ≤ 0.45.