Search Results

Now showing 1 - 3 of 3
  • Item
    Superconducting switching due to a triplet component in the Pb/Cu/Ni/Cu/Co2Cr1-xFexAly spin-valve structure
    (Frankfurt am Main : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2019) Kamashev, A.A.; Garif'yanov, N.N.; Validov, A.A.; Schumann, J.; Kataev, V.; Büchner, B.; Fominov, Y.V.; Garifullin, I.A.
    We report the superconducting properties of the Co2Cr1-xFexAly/Cu/Ni/Cu/Pb spin-valve structure the magnetic part of which comprises the Heusler alloy layer HA = Co2Cr1-xFexAly with a high degree of spin polarization (DSP) of the conduction band and a Ni layer of variable thickness. The separation between the superconducting transition curves measured for the parallel (α = 0°) and perpendicular (α = 90°) orientation of the magnetization of the HA and the Ni layers reaches up to 0.5 K (α is the angle between the magnetization of two ferromagnetic layers). For all studied samples the dependence of the superconducting transition temperature Tc on α demonstrates a deep minimum in the vicinity of the perpendicular configuration of the magnetizations. This suggests that the observed minimum and the corresponding full switching effect of the spin valve is caused by the long-range triplet component of the superconducting condensate in the multilayer. Such a large effect can be attributed to a half-metallic nature of the HA layer, which in the orthogonal configuration efficiently draws off the spin-polarized Cooper pairs from the space between the HA and Ni layers. Our results indicate a significant potential of the concept of a superconducting spin-valve multilayer comprising a half-metallic ferromagnet, recently proposed by A. Singh et al., Phys. Rev. X 2015, 5, 021019, in achieving large values of the switching effect.
  • Item
    High-field ESR studies of the quantum spin magnet CaCu2O 3
    (Milton Park : Taylor & Francis, 2006) Goiran, M.; Costes, M.; Broto, J.M.; Chou, F.C.; Klingeler, R.; Arushanov, E.; Drechsler, S.-L.; Büchner, B.; Kataev, V.
    We report an electron spin resonance (ESR) study of the s = 1/2 Heisenberg pseudo-ladder magnet CaCu2O3 in pulsed magnetic fields up to 40 T. At sub-terahertz frequencies we observe an ESR signal originating from a small amount of uncompensated spins residing presumably at the imperfections of the strongly antiferromagnetically correlated host spin lattice. The data give evidence that these few per cent of 'extra' spin states are coupled strongly to the bulk spins and are involved in the antiferromagnetic (AF) ordering at TN = 25 K. By mapping the frequency/resonance field diagram we have determined a small gap for magnetic excitations below TN of the order of ~0.3–0.8 meV. Such a small value of the gap explains the occurrence of the spin-flop transition in CaCu2O3 at weak magnetic fields μ0Hsf ~ 3 T. Qualitative changes of the ESR response with the increasing field strength give indications that strong magnetic fields reduce the AF correlations and may even suppress the long-range magnetic order in CaCu2O3. ESR data support scenarios with a significant role of the 'extra' spin states for the properties of low-dimensional quantum magnets.
  • Item
    Fermi surface nesting in several transition metal dichalcogenides
    (Milton Park : Taylor & Francis, 2008) Inosov, D.S.; Zabolotnyy, V.B.; Evtushinsky, D.V.; Kordyuk, A.A.; Büchner, B.; Follath, R.; Berger, H.; Borisenko, S.V.
    By means of high-resolution angle-resolved photoelectron spectroscopy (ARPES), we have studied the fermiology of 2H transition metal dichalcogenide polytypes TaSe2, NbSe2 and Cu0.2NbS 2. The tight-binding model of the electronic structure, extracted from ARPES spectra for all three compounds, was used to calculate the Lindhard function (bare spin susceptibility), which reflects the propensity to charge density wave (CDW) instabilities observed in TaSe2 and NbSe 2. We show that though the Fermi surfaces of all three compounds possess an incommensurate nesting vector in the close vicinity of the CDW wave vector, the nesting and ordering wave vectors do not exactly coincide, and there is no direct relationship between the magnitude of the susceptibility at the nesting vector and the CDW transition temperature. The nesting vector persists across the incommensurate CDW transition in TaSe2 as a function of temperature despite the observable variations of the Fermi surface geometry in this temperature range. In Cu0.2NbS2, the nesting vector is present despite different doping levels, which leads us to expect a possible enhancement of the CDW instability with Cu intercalation in the Cu xNbS2 family of materials.