Search Results

Now showing 1 - 4 of 4
  • Item
    Energy-level alignment at interfaces between manganese phthalocyanine and C60
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2017-4-25) Waas, Daniel; Rückerl, Florian; Knupfer, Martin; Büchner, Bernd
    We have used photoelectron spectroscopy to determine the energy-level alignment at organic heterojunctions made of manganese phthalocyanine (MnPc) and the fullerene C60. We show that this energy-level alignment depends upon the preparation sequence, which is explained by different molecular orientations. Moreover, our results demonstrate that MnPc/C60 interfaces are hardly suited for application in organic photovoltaic devices, since the energy difference of the two lowest unoccupied molecular orbitals (LUMOs) is rather small.
  • Item
    Observation of strontium segregation in LaAlO3/SrTiO3 and NdGaO3/SrTiO3 oxide heterostructures by X-ray photoemission spectroscopy
    (New York : American Institute of Physics, 2014) Treske, Uwe; Heming, Nadine; Knupfer, Martin; Büchner, Bernd; Koitzsch, Andreas; Di Gennaro, Emiliano; Scotti di Uccio, Umberto; Miletto Granozio, Fabio; Krause, Stefan
    LaAlO3 and NdGaO3 thin films of different thicknesses have been grown by pulsed laser deposition on TiO2-terminated SrTiO3 single crystals and investigated by soft X-ray photoemission spectroscopy. The surface sensitivity of the measurements has been tuned by varying photon energy hν and emission angle Θ. In contrast to the core levels of the other elements, the Sr 3d line shows an unexpected splitting for higher surface sensitivity, signaling the presence of a second strontium component. From our quantitative analysis we conclude that during the growth process Sr atoms diffuse away from the substrate and segregate at the surface of the heterostructure, possibly forming strontium oxide
  • Item
    Charge transfer from and to manganese phthalocyanine: bulk materials and interfaces
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2017-8-4) Rückerl, Florian; Waas, Daniel; Büchner, Bernd; Knupfer, Martin; Zahn, Dietrich R. T.; Haidu, Francisc; Hahn, Torsten; Kortus, Jens
    Manganese phthalocyanine (MnPc) is a member of the family of transition-metal phthalocyanines, which combines interesting electronic behavior in the fields of organic and molecular electronics with local magnetic moments. MnPc is characterized by hybrid states between the Mn 3d orbitals and the π orbitals of the ligand very close to the Fermi level. This causes particular physical properties, different from those of the other phthalocyanines, such as a rather small ionization potential, a small band gap and a large electron affinity. These can be exploited to prepare particular compounds and interfaces with appropriate partners, which are characterized by a charge transfer from or to MnPc. We summarize recent spectroscopic and theoretical results that have been achieved in this regard.
  • Item
    Universal electronic structure of polar oxide hetero-interfaces
    (London : Nature Publishing Group, 2015) Treske, Uwe; Heming, Nadine; Knupfer, Martin; Büchner, Bernd; Di Gennaro, Emiliano; Khare, Amit; Di Uccio, Umberto Scotti; Granozio, Fabio Miletto; Krause, Stefan; Koitzsch, Andreas
    The electronic properties of NdGaO3/SrTiO3, LaGaO3/SrTiO3, and LaAlO3/SrTiO3 interfaces, all showing an insulator-to-metal transition as a function of the overlayer-thickness, are addressed in a comparative study based on x-ray absorption, x-ray photoemission and resonant photoemission spectroscopy. The nature of the charge carriers, their concentration and spatial distribution as well as the interface band alignments and the overall interface band diagrams are studied and quantitatively evaluated. The behavior of the three analyzed heterostructures is found to be remarkably similar. The valence band edge of all the three overlayers aligns to that of bulk SrTiO3. The near-interface SrTiO3 layer is affected, at increasing overlayer thickness, by the building-up of a confining potential. This potential bends both the valence and the conduction band downwards. The latter one crossing the Fermi energy in the proximity of the interface and determines the formation of an interfacial band offset growing as a function of thickness. Quite remarkably, but in agreement with previous reports for LaAlO3/SrTiO3, no electric field is detected inside any of the polar overlayers. The essential phenomenology emerging from our findings is discussed on the base of different alternative scenarios regarding the origin of interface carriers and their interaction with an intense photon beam.