Search Results

Now showing 1 - 5 of 5
Loading...
Thumbnail Image
Item

Tuning the spin coherence time of Cu(II)−(bis)oxamato and Cu(II)−(bis)oxamidato complexes by advanced ESR pulse protocols

2017-4-27, Zaripov, Ruslan, Vavilova, Evgeniya, Khairuzhdinov, Iskander, Salikhov, Kev, Voronkova, Violeta, Abdulmalic, Mohammad A., Meva, Francois E., Weheabby, Saddam, Rüffer, Tobias, Büchner, Bernd, Kataev, Vladislav

We have investigated with the pulsed ESR technique at X- and Q-band frequencies the coherence and relaxation of Cu spins S = 1/2 in single crystals of diamagnetically diluted mononuclear [n-Bu4N]2[Cu(opba)] (1%) in the host lattice of [n-Bu4N]2[Ni(opba)] (99%, opba = o-phenylenebis(oxamato)) and of diamagnetically diluted mononuclear [n-Bu4N]2[Cu(opbon-Pr2)] (1%) in the host lattice of [n-Bu4N]2[Ni(opbon-Pr2)] (99%, opbon-Pr2 = o-phenylenebis(N(propyl)oxamidato)). For that we have measured the electron spin dephasing time Tm at different temperatures with the two-pulse primary echo and with the special Carr–Purcell–Meiboom–Gill (CPMG) multiple microwave pulse sequence. Application of the CPMG protocol has led to a substantial increase of the spin coherence lifetime in both complexes as compared to the primary echo results. It shows the efficiency of the suppression of the electron spin decoherence channel in the studied complexes arising due to spectral diffusion induced by a random modulation of the hyperfine interaction with the nuclear spins. We argue that this method can be used as a test for the relevance of the spectral diffusion for the electron spin decoherence. Our results have revealed a prominent role of the opba4– and opbon-Pr24– ligands for the dephasing of the Cu spins. The presence of additional 14N nuclei and protons in [Cu(opbon-Pr2)]2– as compared to [Cu(opba)]2– yields significantly shorter Tm times. Such a detrimental effect of the opbon-Pr24− ligands has to be considered when discussing a potential application of the Cu(II)−(bis)oxamato and Cu(II)−(bis)oxamidato complexes as building blocks of more complex molecular structures in prototype spintronic devices. Furthermore, in our work we propose an improved CPMG pulse protocol that enables elimination of unwanted echoes that inevitably appear in the case of inhomogeneously broadened ESR spectra due to the selective excitation of electron spins.

Loading...
Thumbnail Image
Item

Adsorption characteristics of Er3N@C80on W(110) and Au(111) studied via scanning tunneling microscopy and spectroscopy

2017-5-23, Schimmel, Sebastian, Sun, Zhixiang, Baumann, Danny, Krylov, Denis, Samoylova, Nataliya, Popov, Alexey, Büchner, Bernd, Hess, Christian

We performed a study on the fundamental adsorption characteristics of Er3N@C80 deposited on W(110) and Au(111) via room temperature scanning tunneling microscopy and spectroscopy. Adsorbed on W(110), a comparatively strong bond to the endohedral fullerenes inhibited the formation of ordered monolayer islands. In contrast, the Au(111)-surface provides a sufficiently high mobility for the molecules to arrange in monolayer islands after annealing. Interestingly, the fullerenes modify the herringbone reconstruction indicating that the molecule–substrate interaction is of considerable extent. Investigations concerning the electronic structure of Er3N@C80/Au(111) reveals spatial variations dependent on the termination of the Au(111) at the interface.

Loading...
Thumbnail Image
Item

Probing the magnetic superexchange couplings between terminal CuII ions in heterotrinuclear bis(oxamidato) type complexes

2017-4-6, Abdulmalic, Mohammad A., Weheabby, Saddam, Meva, Francois E., Aliabadi, Azar, Kataev, Vladislav, Büchner, Bernd, Schleife, Frederik, Kersting, Berthold, Rüffer, Tobias

The reaction of one equivalent of [n-Bu4N]2[Ni(opboR2)] with two equivalents of [Cu(pmdta)(X)2] afforded the heterotrinuclear CuIINiIICuII containing bis(oxamidato) type complexes [Cu2Ni(opboR2)(pmdta)2]X2 (R = Me, X = NO3– (1); R = Et, X = ClO4– (2); R = n-Pr, X = NO3– (3); opboR2 = o-phenylenebis(NR-substituted oxamidato); pmdta = N,N,N’,N”,N”-pentamethyldiethylenetriamine). The identities of the heterotrinuclear complexes 1–3 were established by IR spectroscopy, elemental analysis and single-crystal X-ray diffraction studies, which revealed the cationic complex fragments [Cu2Ni(opboR2)(pmdta)2]2+ as not involved in any further intermolecular interactions. As a consequence thereof, the complexes 1–3 possess terminal paramagnetic [Cu(pmdta)]2+ fragments separated by [NiII(opboR2)]2– bridging units representing diamagnetic SNi = 0 states. The magnetic field dependence of the magnetization M(H) of 1–3 at T = 1.8 K has been determined and is shown to be highly reproducible with the Brillouin function for an ideal paramagnetic spin = 1/2 system, verifying experimentally that no magnetic superexchange couplings exists between the terminal paramagnetic [Cu(pmdta)]2+ fragments. Susceptibility measurements versus temperature of 1–3 between 1.8–300 K were performed to reinforce the statement of the absence of magnetic superexchange couplings in these three heterotrinuclear complexes.

Loading...
Thumbnail Image
Item

Charge transfer from and to manganese phthalocyanine: bulk materials and interfaces

2017-8-4, Rückerl, Florian, Waas, Daniel, Büchner, Bernd, Knupfer, Martin, Zahn, Dietrich R. T., Haidu, Francisc, Hahn, Torsten, Kortus, Jens

Manganese phthalocyanine (MnPc) is a member of the family of transition-metal phthalocyanines, which combines interesting electronic behavior in the fields of organic and molecular electronics with local magnetic moments. MnPc is characterized by hybrid states between the Mn 3d orbitals and the π orbitals of the ligand very close to the Fermi level. This causes particular physical properties, different from those of the other phthalocyanines, such as a rather small ionization potential, a small band gap and a large electron affinity. These can be exploited to prepare particular compounds and interfaces with appropriate partners, which are characterized by a charge transfer from or to MnPc. We summarize recent spectroscopic and theoretical results that have been achieved in this regard.

Loading...
Thumbnail Image
Item

Energy-level alignment at interfaces between manganese phthalocyanine and C60

2017-4-25, Waas, Daniel, Rückerl, Florian, Knupfer, Martin, Büchner, Bernd

We have used photoelectron spectroscopy to determine the energy-level alignment at organic heterojunctions made of manganese phthalocyanine (MnPc) and the fullerene C60. We show that this energy-level alignment depends upon the preparation sequence, which is explained by different molecular orientations. Moreover, our results demonstrate that MnPc/C60 interfaces are hardly suited for application in organic photovoltaic devices, since the energy difference of the two lowest unoccupied molecular orbitals (LUMOs) is rather small.