Search Results

Now showing 1 - 10 of 12
Loading...
Thumbnail Image
Item

Magnetic Nanoparticle Chains in Gelatin Ferrogels: Bioinspiration from Magnetotactic Bacteria

2019, Sturm, Sebastian, Siglreitmeier, Maria, Wolf, Daniel, Vogel, Karin, Gratz, Micha, Faivre, Damien, Lubk, Axel, Büchner, Bernd, Sturm, Elena V., Cölfen, Helmut

Inspired by chains of ferrimagnetic nanocrystals (NCs) in magnetotactic bacteria (MTB), the synthesis and detailed characterization of ferrimagnetic magnetite NC chain-like assemblies is reported. An easy green synthesis route in a thermoreversible gelatin hydrogel matrix is used. The structure of these magnetite chains prepared with and without gelatin is characterized by means of transmission electron microscopy, including electron tomography (ET). These structures indeed bear resemblance to the magnetite assemblies found in MTB, known for their mechanical flexibility and outstanding magnetic properties and known to crystallographically align their magnetite NCs along the strongest <111> magnetization easy axis. Using electron holography (EH) and angular dependent magnetic measurements, the magnetic interaction between the NCs and the generation of a magnetically anisotropic material can be shown. The electro- and magnetostatic modeling demonstrates that in order to precisely determine the magnetization (by means of EH) inside chain-like NCs assemblies, their exact shape, arrangement and stray-fields have to be considered (ideally obtained using ET). © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Loading...
Thumbnail Image
Item

Exciton dispersion in para-quaterphenyl: Significant molecular interactions beyond Coulomb coupling

2021, Graf, Lukas, Krupskaya, Yulia, Büchner, Bernd, Knupfer, Martin

We have experimentally determined the momentum dependence of the electronic excitation spectra of para-quaterphenyl single crystals. The parallel arrangement of para-quaterphenyl molecules results in a strong Coulomb coupling of the molecular excitons. Such crystals have been considered to be a very good realization of the Frenkel exciton model, including the formation of H-type aggregates. Our data reveal an unexpected exciton dispersion of the upper Davydov component, which cannot be rationalized in terms of inter-molecular Coulomb coupling of the excitons. A significant reduction of the nearest neighbor coupling due to additional charge-transfer processes is able to provide an explanation of the data. Furthermore, the spectral onset of the excitation spectrum, which represents a heavy exciton resulting from exciton-phonon coupling, also shows a clear dispersion, which had been unknown so far. Finally, an optically forbidden excitation about 1 eV above the excitation onset is observed. © 2021 Author(s).

Loading...
Thumbnail Image
Item

Strong surface termination dependence of the electronic structure of polar superconductor LaFeAsO revealed by nano-ARPES

2022, Jung, Sung Won, Rhodes, Luke C, Watson, Matthew D, Evtushinsky, Daniil V, Cacho, Cephise, Aswartham, Saicharan, Kappenberger, Rhea, Wurmehl, Sabine, Büchner, Bernd, Kim, Timur K

The electronic structures of the iron-based superconductors have been intensively studied by using angle-resolved photoemission spectroscopy (ARPES). A considerable amount of research has been focused on the LaFeAsO family, showing the highest transition temperatures, where previous ARPES studies have found much larger Fermi surfaces than bulk theoretical calculations would predict. The discrepancy has been attributed to the presence of termination-dependent surface states. Here, using photoemission spectroscopy with a sub-micron focused beam spot (nano-ARPES) we have successfully measured the electronic structures of both the LaO and FeAs terminations in LaFeAsO. Our data reveal very different band dispersions and core-level spectra for different surface terminations, showing that previous macro-focus ARPES measurements were incomplete. Our results give direct evidence for the surface-driven electronic structure reconstruction in LaFeAsO, including formation of the termination-dependent surface states at the Fermi level. This experimental technique, which we have shown to be very powerful when applied to this prototypical compound, can now be used to study various materials with different surface terminations.

Loading...
Thumbnail Image
Item

Sixfold fermion near the Fermi level in cubic PtBi2

2021, Thirupathaiah, Setti, Kushnirenko, Yevhen, Koepernik, Klaus, Piening, Boy Roman, Büchner, Bernd, Aswartham, Saicharan, van den Brink, Jeroen, Borisenko, Sergey, Fulga, Ion Cosma

We show that the cubic compound PtBi2, is a topological semimetal hosting a sixfold band touching point in close proximity to the Fermi level. Using angle-resolved photoemission spectroscopy, we map the bandstructure of the system, which is in good agreement with results from density functional theory. Further, by employing a low energy effective Hamiltonian valid close to the crossing point, we study the effect of a magnetic field on the sixfold fermion. The latter splits into a total of twenty Weyl cones for a Zeeman field oriented in the diagonal, [111] direction. Our results mark cubic PtBi2, as an ideal candidate to study the transport properties of gapless topological systems beyond Dirac and Weyl semimetals.

Loading...
Thumbnail Image
Item

Robust Single Molecule Magnet Monolayers on Graphene and Graphite with Magnetic Hysteresis up to 28 K

2021, Spree, Lukas, Liu, Fupin, Neu, Volker, Rosenkranz, Marco, Velkos, Georgios, Wang, Yaofeng, Schiemenz, Sandra, Dreiser, Jan, Gargiani, Pierluigi, Valvidares, Manuel, Chen, Chia-Hsiang, Büchner, Bernd, Avdoshenko, Stanislav M., Popov, Alexey A.

The chemical functionalization of fullerene single molecule magnet Tb2@C80(CH2Ph) enables the facile preparation of robust monolayers on graphene and highly oriented pyrolytic graphite from solution without impairing their magnetic properties. Monolayers of endohedral fullerene functionalized with pyrene exhibit magnetic bistability up to a temperature of 28 K. The use of pyrene terminated linker molecules opens the way to devise integration of spin carrying units encapsulated by fullerene cages on graphitic substrates, be it single-molecule magnets or qubit candidates. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

Elastoresistivity of Heavily Hole-Doped 122 Iron Pnictide Superconductors

2022, Hong, Xiaochen, Sykora, Steffen, Caglieris, Federico, Behnami, Mahdi, Morozov, Igor, Aswartham, Saicharan, Grinenko, Vadim, Kihou, Kunihiro, Lee, Chul-Ho, Büchner, Bernd, Hess, Christian

Nematicity in heavily hole-doped iron pnictide superconductors remains controversial. Sizeable nematic fluctuations and even nematic orders far from magnetic instability were declared in RbFe2As2 and its sister compounds. Here, we report a systematic elastoresistance study of a series of isovalent- and electron-doped KFe2As2 crystals. We found divergent elastoresistance on cooling for all the crystals along their [110] direction. The amplitude of elastoresistivity diverges if K is substituted with larger ions or if the system is driven toward a Lifshitz transition. However, we conclude that none of them necessarily indicates an independent nematic critical point. Instead, the increased nematicity can be associated with another electronic criticality. In particular, we propose a mechanism for how elastoresistivity is enhanced at a Lifshitz transition.

Loading...
Thumbnail Image
Item

Evidence for a percolative Mott insulator-metal transition in doped Sr2IrO4

2021, Sun, Zhixiang, Guevara, Jose M., Sykora, Steffen, Pärschke, Ekaterina M., Manna, Kaustuv, Maljuk, Andrey, Wurmehl, Sabine, van den Brink, Jeroen, Büchner, Bernd, Hess, Christian

Despite many efforts to rationalize the strongly correlated electronic ground states in doped Mott insulators, the nature of the doping-induced insulator-to-metal transition is still a subject under intensive investigation. Here, we probe the nanoscale electronic structure of the Mott insulator Sr2IrO4−δ with low-temperature scanning tunneling microscopy and find an enhanced local density of states (LDOS) inside the Mott gap at the location of individual defects which we interpret as defects at apical oxygen sites. A chiral behavior in the topography for those defects has been observed. We also visualize the local enhanced conductance arising from the overlapping of defect states which induces finite LDOS inside of the Mott gap. By combining these findings with the typical spatial extension of isolated defects of about 2 nm, our results indicate that the insulator-to-metal transition in Sr2IrO4−δ could be percolative in nature.

Loading...
Thumbnail Image
Item

Tailoring Plasmonics of Au@Ag Nanoparticles by Silica Encapsulation

2021, Schultz, Johannes, Kirner, Felizitas, Potapov, Pavel, Büchner, Bernd, Lubk, Axel, Sturm, Elena V.

Hybrid metallic nanoparticles (NPs) encapsulated in oxide shells are currently intensely studied for plasmonic applications in sensing, medicine, catalysis, and photovoltaics. Here, a method for the synthesis of Au@Ag@SiO2 cubes with a uniform silica shell of variable and adjustable thickness in the nanometer range is introduced and their excellent, highly reproducible, and tunable optical response is demonstrated. Varying the silica shell thickness, the excitation energies of the single NP plasmon modes can be tuned in a broad spectral range between 2.55 and 3.25 eV. Most importantly, a strong coherent coupling of the surface plasmons is revealed at the silver–silica interface with Mie resonances at the silica–vacuum interface leading to a significant field enhancement at the encapsulated NP surface in the range of 100% at shell thicknesses t ≃ 20 nm. Consequently, the synthesis method and the field enhancement open pathways to a widespread use of silver NPs in plasmonic applications including photonic crystals and may be transferred to other non-precious metals. © 2021 The Authors. Advanced Optical Materials published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

Interplay of charge density waves, disorder, and superconductivity in 2H-TaSe2 elucidated by NMR

2022, Baek, Seung-Ho, Sur, Yeahan, Kim, Kee Hoon, Vojta, Matthias, Büchner, Bernd

Single crystals of pristine and 6% Pd-intercalated 2H‐TaSe2 have been studied by means of 77Se nuclear magnetic resonance. The temperature dependence of the 77Se spectrum, with an unexpected line narrowing upon Pd intercalation, unravels the presence of correlated local lattice distortions far above the transition temperature of the charge density wave (CDW) order, thereby supporting a strong-coupling CDW mechanism in 2H‐TaSe2. While, the Knight shift data suggest that the incommensurate CDW transition involves a partial Fermi surface gap opening. As for spin dynamics, the 77Se spin-lattice relaxation rate T1-1 as a function of temperature shows that a pseudogap behavior dominates the low-energy spin excitations even within the CDW phase, and gets stronger along with superconductivity in the Pd-6% sample. We discuss that CDW fluctuations may be responsible for the pseudogap as well as superconductivity, although the two phenomena are unlikely to be directly linked each other.

Loading...
Thumbnail Image
Item

Unusual spin pseudogap behavior in the spin web lattice Cu3TeO6 probed by 125Te nuclear magnetic resonance

2021, Baek, Seung-Ho, Yeo, Hyeon Woo, Park, Jena, Choi, Kwang-Yong, Büchner, Bernd

We present a 125Te nuclear magnetic resonance (NMR) study in the three-dimensional spin web lattice Cu3TeO6 which harbors topological magnons. The 125Te NMR spectra and the Knight-shift K as a function of temperature show a drastic change at TS∼40K much lower than the Néel ordering temperature TN∼61K, providing evidence for the first-order structural phase transition within the magnetically ordered state. Most remarkably, the temperature dependence of the spin-lattice relaxation rate T−11 unravels spin-gap-like magnetic excitations, which sharply sets in at T∗∼75K, the temperature well above TN. The spin-gap behavior may be understood by weakly dispersive optical magnon branches of high-energy spin excitations originating from the unique corner-sharing Cu hexagon spin-1/2 network with low coordination number.