Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Evidence for a percolative Mott insulator-metal transition in doped Sr2IrO4

2021, Sun, Zhixiang, Guevara, Jose M., Sykora, Steffen, Pärschke, Ekaterina M., Manna, Kaustuv, Maljuk, Andrey, Wurmehl, Sabine, van den Brink, Jeroen, Büchner, Bernd, Hess, Christian

Despite many efforts to rationalize the strongly correlated electronic ground states in doped Mott insulators, the nature of the doping-induced insulator-to-metal transition is still a subject under intensive investigation. Here, we probe the nanoscale electronic structure of the Mott insulator Sr2IrO4−δ with low-temperature scanning tunneling microscopy and find an enhanced local density of states (LDOS) inside the Mott gap at the location of individual defects which we interpret as defects at apical oxygen sites. A chiral behavior in the topography for those defects has been observed. We also visualize the local enhanced conductance arising from the overlapping of defect states which induces finite LDOS inside of the Mott gap. By combining these findings with the typical spatial extension of isolated defects of about 2 nm, our results indicate that the insulator-to-metal transition in Sr2IrO4−δ could be percolative in nature.

Loading...
Thumbnail Image
Item

Unusual spin pseudogap behavior in the spin web lattice Cu3TeO6 probed by 125Te nuclear magnetic resonance

2021, Baek, Seung-Ho, Yeo, Hyeon Woo, Park, Jena, Choi, Kwang-Yong, Büchner, Bernd

We present a 125Te nuclear magnetic resonance (NMR) study in the three-dimensional spin web lattice Cu3TeO6 which harbors topological magnons. The 125Te NMR spectra and the Knight-shift K as a function of temperature show a drastic change at TS∼40K much lower than the Néel ordering temperature TN∼61K, providing evidence for the first-order structural phase transition within the magnetically ordered state. Most remarkably, the temperature dependence of the spin-lattice relaxation rate T−11 unravels spin-gap-like magnetic excitations, which sharply sets in at T∗∼75K, the temperature well above TN. The spin-gap behavior may be understood by weakly dispersive optical magnon branches of high-energy spin excitations originating from the unique corner-sharing Cu hexagon spin-1/2 network with low coordination number.