Search Results

Now showing 1 - 9 of 9
Loading...
Thumbnail Image
Item

TSFZ Growth of Eu-Substituted Large-Size LSCO Crystals

2022, Voloshyna, Olesia, Romaka, Vitaliy V., Karmakar, Koushik ;Seiro, Silvia, Maljuk, Andrey, Büchner, Bernd

The travelling solvent floating zone (TSFZ) growth of Eu-substituted LSCO (La1.81−xEuxSr0.19CuO4, with nominal x = 0 ÷ 0.4) single crystals was systematically explored for the first time. The substitution of La with Eu considerably decreased the decomposition temperature. Optimal growth parameters were found to be: oxygen pressure 9.0–9.5 bars; Eu-free CuO-poor solvent (66 mol% CuO) with a molar ratio of La2O3:SrCO3:CuO = 4:4.5:16.5 and growth rate 0.6 mm/hour. The obtained single crystals were characterized with optical polarized microscopy, X-ray diffraction and energy-dispersive X-ray spectroscopy analysis. The solubility of Eu in LSCO appeared to be limited to x~0.36–0.38 under the used conditions. The substitution of La3+ with smaller Eu3+ ions led to a structural transition from tetragonal with space group I4/mmm for La1.81Sr0.19CuO4 (x = 0) to orthorhombic with space group Fmmm for La1.81−xSr0.19EuxCuO4 (x = 0.2, 0.3, 0.4), and to a substantial shrinking of the c-axis from 13.2446 Å (x = 0.0) to 13.1257 Å (x = 0.4). Such structural changes were accompanied by a dramatic decrease in the superconducting critical temperature, Tc, from 29.5 K for x = 0 to 13.8 K for 0.2. For x ≥ 0.3, no superconductivity was detected down to 4 K.

Loading...
Thumbnail Image
Item

Carbon cage isomers and magnetic Dy⋯Dy interactions in Dy2O@C88 and Dy2C2@C88 metallofullerenes

2022, Yang, Wei, Velkos, Georgios, Sudarkova, Svetlana, Büchner, Bernd, Avdoshenko, Stanislav M., Liu, Fupin, Popov, Alexey A., Chen, Ning

Three isomers of Dy2O@C88 and two isomers of Dy2C2@C88 were synthesized and structurally characterized by single-crystal X-ray diffraction, vibrational spectroscopy, and DFT calculations. Both types of clusterfullerenes feature 4-fold electron transfer to the carbon cage, thus resulting in the same carbon cage isomers identified as C1(26), Cs(32), and D2(35). The studies of Dy⋯Dy superexchange interactions in Dy2O and Dy2C2 clusters revealed that the O2− bridge favors antiferromagnetic coupling whereas the acetylide group C22− supports ferromagnetic coupling of Dy magnetic moments. The strength of the coupling showed a considerable variability in different cage isomers. All metallofullerenes exhibited slow relaxation of magnetization and magnetic hysteresis. In Dy2O@C88 isomers the hysteresis remained open up to 7-9 K, while in Dy2C2@C88 the hysteresis loops were closed already at 2.5 K. This study demonstrated that both the endohedral bridge between metal atoms and the fullerene cage play an important role in magnetic interactions and relaxation of magnetization.

Loading...
Thumbnail Image
Item

Interplay of charge density waves, disorder, and superconductivity in 2H-TaSe2 elucidated by NMR

2022, Baek, Seung-Ho, Sur, Yeahan, Kim, Kee Hoon, Vojta, Matthias, Büchner, Bernd

Single crystals of pristine and 6% Pd-intercalated 2H‐TaSe2 have been studied by means of 77Se nuclear magnetic resonance. The temperature dependence of the 77Se spectrum, with an unexpected line narrowing upon Pd intercalation, unravels the presence of correlated local lattice distortions far above the transition temperature of the charge density wave (CDW) order, thereby supporting a strong-coupling CDW mechanism in 2H‐TaSe2. While, the Knight shift data suggest that the incommensurate CDW transition involves a partial Fermi surface gap opening. As for spin dynamics, the 77Se spin-lattice relaxation rate T1-1 as a function of temperature shows that a pseudogap behavior dominates the low-energy spin excitations even within the CDW phase, and gets stronger along with superconductivity in the Pd-6% sample. We discuss that CDW fluctuations may be responsible for the pseudogap as well as superconductivity, although the two phenomena are unlikely to be directly linked each other.

Loading...
Thumbnail Image
Item

Curcumin and Graphene Oxide Incorporated into Alginate Hydrogels as Versatile Devices for the Local Treatment of Squamous Cell Carcinoma

2022, Madeo, Lorenzo Francesco, Sarogni, Patrizia, Cirillo, Giuseppe, Vittorio, Orazio, Voliani, Valerio, Curcio, Manuela, Shai-Hee, Tyler, Büchner, Bernd, Mertig, Michael, Hampel, Silke

With the aim of preparing hybrid hydrogels suitable for use as patches for the local treatment of squamous cell carcinoma (SCC)-affected areas, curcumin (CUR) was loaded onto graphene oxide (GO) nanosheets, which were then blended into an alginate hydrogel that was crosslinked by means of calcium ions. The homogeneous incorporation of GO within the polymer network, which was confirmed through morphological investigations, improved the stability of the hybrid system compared to blank hydrogels. The weight loss in the 100–170 °C temperature range was reduced from 30% to 20%, and the degradation of alginate chains shifted to higher temperatures. Moreover, GO enhanced the stability in water media by counteracting the de-crosslinking process of the polymer network. Cell viability assays showed that the loading of CUR (2.5% and 5% by weight) was able to reduce the intrinsic toxicity of GO towards healthy cells, while higher amounts were ineffective due to the antioxidant/prooxidant paradox. Interestingly, the CUR-loaded systems were found to possess a strong cytotoxic effect in SCC cancer cells, and the sustained CUR release (~50% after 96 h) allowed long-term anticancer efficiency to be hypothesized.

Loading...
Thumbnail Image
Item

Using internal strain and mass to modulate Dy⋯Dy coupling and relaxation of magnetization in heterobimetallic metallofullerenes DyM2N@C80 and Dy2MN@C80 (M = Sc, Y, La, Lu)

2022, Hao, Yajuan, Velkos, Georgios, Schiemenz, Sandra, Rosenkranz, Marco, Wang, Yaofeng, Büchner, Bernd, Avdoshenko, Stanislav M., Popov, Alexey A., Liu, Fupin

Endohedral clusters inside metallofullerenes experience considerable inner strain when the size of the hosting cage is comparably small. This strain can be tuned in mixed-metal metallofullerenes by combining metals of different sizes. Here we demonstrate that the internal strain and mass can be used as variables to control Dy⋯Dy coupling and relaxation of magnetization in Dy-metallofullerenes. Mixed-metal nitride clusterfullerenes DyxY3−xN@Ih-C80 (x = 0-3) and Dy2LaN@Ih-C80 combining Dy with diamagnetic rare-earth elements, Y and La, were synthesized and characterized by single-crystal X-ray diffraction, SQUID magnetometry, ab initio calculations, and spectroscopic techniques. DyxY3−xN clusters showed a planar structure, but the slightly larger size of Dy3+ in comparison with that of Y3+ resulted in increased elongation of the nitrogen thermal ellipsoid, showing enhancement of the out-of-plane vibrational amplitude. When Dy was combined with larger La, the Dy2LaN cluster appeared strongly pyramidal with the distance between two nitrogen sites of 1.15(1) Å, whereas DyLa2N@C80 could not be obtained in a separable yield. Magnetic studies revealed that the relaxation of magnetization and blocking temperature of magnetization in the DyM2N@C80 series (M = Sc, Y, Lu) correlated with the mass of M, with DySc2N@C80 showing the fastest and DyLu2N@C80 the slowest relaxation. Ab initio calculations predicted very similar g-tensors for Dy3+ ground state pseudospin in all studied DyM2N@C80 molecules, suggesting that the variation in relaxation is caused by different vibrational spectra of these compounds. In the Dy2MN@C80 series (M = Sc, Y, La, Lu), the magnetic and hysteretic behavior was found to correlate with Dy⋯Dy coupling, which in turn appears to depend on the size of M3+. Across the Dy2MN@C80 series, the energy difference between ferromagnetic and antiferromagnetic states changes from 5.6 cm−1 in Dy2ScN@C80 to 3.0 cm−1 in Dy2LuN@C80, 1.0 cm−1 in Dy2YN@C80, and −0.8 cm−1 in Dy2LaN@C80. The coupling of Dy ions suppresses the zero-field quantum tunnelling of magnetization but opens new relaxation channels, making the relaxation rate dependent on the coupling strengths. DyY2N@C80 and Dy2YN@C80 were found to be non-luminescent, while the luminescence reported for DyY2N@C80 was caused by traces of Y3N@C80 and Y2ScN@C80

Loading...
Thumbnail Image
Item

Strong surface termination dependence of the electronic structure of polar superconductor LaFeAsO revealed by nano-ARPES

2022, Jung, Sung Won, Rhodes, Luke C, Watson, Matthew D, Evtushinsky, Daniil V, Cacho, Cephise, Aswartham, Saicharan, Kappenberger, Rhea, Wurmehl, Sabine, Büchner, Bernd, Kim, Timur K

The electronic structures of the iron-based superconductors have been intensively studied by using angle-resolved photoemission spectroscopy (ARPES). A considerable amount of research has been focused on the LaFeAsO family, showing the highest transition temperatures, where previous ARPES studies have found much larger Fermi surfaces than bulk theoretical calculations would predict. The discrepancy has been attributed to the presence of termination-dependent surface states. Here, using photoemission spectroscopy with a sub-micron focused beam spot (nano-ARPES) we have successfully measured the electronic structures of both the LaO and FeAs terminations in LaFeAsO. Our data reveal very different band dispersions and core-level spectra for different surface terminations, showing that previous macro-focus ARPES measurements were incomplete. Our results give direct evidence for the surface-driven electronic structure reconstruction in LaFeAsO, including formation of the termination-dependent surface states at the Fermi level. This experimental technique, which we have shown to be very powerful when applied to this prototypical compound, can now be used to study various materials with different surface terminations.

Loading...
Thumbnail Image
Item

Synthesis and Physical Properties of Iridium-Based Sulfide Ca1−xIr4S6(S2) [x = 0.23–0.33]

2022, Vogl, Michael, Valldor, Martin, Piening, Roman Boy, Efremov, Dmitri V., Büchner, Bernd, Aswartham, Saicharan

We present the synthesis and characterization of the iridium-based sulfide Ca1−xIr4S6(S2). Quality and phase analysis were conducted by means of energy-dispersive X-ray spectroscopy (EDXS) and powder X-ray diffraction (XRD) techniques. Structure analysis reveals a monoclinic symmetry with the space group C 1 2/m 1 (No. 12), with the lattice constants a = 15.030 (3) Å, b = 3.5747 (5) Å and c = 10.4572 (18) Å. Both X-ray diffraction and EDXS suggest an off-stoichiometry of calcium, leading to the empirical composition Ca1−xIr4.0S6(S2) [x = 0.23–0.33]. Transport measurements show metallic behavior of the compound in the whole range of measured temperatures. Magnetic measurements down to 1.8 K show no long range order, and Curie–Weiss analysis yields θCW = −31.4 K, suggesting that the compound undergoes a magnetic state with short range magnetic correlations. We supplement our study with calculations of the band structure in the framework of the density functional theory.

Loading...
Thumbnail Image
Item

Elastoresistivity of Heavily Hole-Doped 122 Iron Pnictide Superconductors

2022, Hong, Xiaochen, Sykora, Steffen, Caglieris, Federico, Behnami, Mahdi, Morozov, Igor, Aswartham, Saicharan, Grinenko, Vadim, Kihou, Kunihiro, Lee, Chul-Ho, Büchner, Bernd, Hess, Christian

Nematicity in heavily hole-doped iron pnictide superconductors remains controversial. Sizeable nematic fluctuations and even nematic orders far from magnetic instability were declared in RbFe2As2 and its sister compounds. Here, we report a systematic elastoresistance study of a series of isovalent- and electron-doped KFe2As2 crystals. We found divergent elastoresistance on cooling for all the crystals along their [110] direction. The amplitude of elastoresistivity diverges if K is substituted with larger ions or if the system is driven toward a Lifshitz transition. However, we conclude that none of them necessarily indicates an independent nematic critical point. Instead, the increased nematicity can be associated with another electronic criticality. In particular, we propose a mechanism for how elastoresistivity is enhanced at a Lifshitz transition.

Loading...
Thumbnail Image
Item

Highly efficient modulation doping: A path toward superior organic thermoelectric devices

2022, Wang, Shu-Jen, Panhans, Michel, Lashkov, Ilia, Kleemann, Hans, Caglieris, Federico, Becker-Koch, David, Vahland, Jörn, Guo, Erjuan, Huang, Shiyu, Krupskaya, Yulia, Vaynzof, Yana, Büchner, Bernd, Ortmann, Frank, Leo, Karl

We investigate the charge and thermoelectric transport in modulation-doped large-area rubrene thin-film crystals with different crystal phases. We show that modulation doping allows achieving superior doping efficiencies even for high doping densities, when conventional bulk doping runs into the reserve regime. Modulation-doped orthorhombic rubrene achieves much improved thermoelectric power factors, exceeding 20 μW m−1 K−2 at 80°C. Theoretical studies give insight into the energy landscape of the heterostructures and its influence on qualitative trends of the Seebeck coefficient. Our results show that modulation doping together with high-mobility crystalline organic semiconductor films is a previosly unexplored strategy for achieving high-performance organic thermoelectrics.