Search Results

Now showing 1 - 4 of 4
  • Item
    Saturation of the anomalous Hall effect at high magnetic fields in altermagnetic RuO2
    (Melville, NY : AIP Publ., 2023) Tschirner, Teresa; Keßler, Philipp; Gonzalez Betancourt, Ruben Dario; Kotte, Tommy; Kriegner, Dominik; Büchner, Bernd; Dufouleur, Joseph; Kamp, Martin; Jovic, Vedran; Smejkal, Libor; Sinova, Jairo; Claessen, Ralph; Jungwirth, Tomas; Moser, Simon; Reichlova, Helena; Veyrat, Louis
    Observations of the anomalous Hall effect in RuO2 and MnTe have demonstrated unconventional time-reversal symmetry breaking in the electronic structure of a recently identified new class of compensated collinear magnets, dubbed altermagnets. While in MnTe, the unconventional anomalous Hall signal accompanied by a vanishing magnetization is observable at remanence, the anomalous Hall effect in RuO2 is excluded by symmetry for the Néel vector pointing along the zero-field [001] easy-axis. Guided by a symmetry analysis and ab initio calculations, a field-induced reorientation of the Néel vector from the easy-axis toward the [110] hard-axis was used to demonstrate the anomalous Hall signal in this altermagnet. We confirm the existence of an anomalous Hall effect in our RuO2 thin-film samples, whose set of magnetic and magneto-transport characteristics is consistent with the earlier report. By performing our measurements at extreme magnetic fields up to 68 T, we reach saturation of the anomalous Hall signal at a field Hc ≃ 55 T that was inaccessible in earlier studies but is consistent with the expected Néel-vector reorientation field.
  • Item
    Magnetic Hysteresis at 10 K in Single Molecule Magnet Self‐Assembled on Gold
    (Weinheim : Wiley-VCH, 2021) Chen, Chia-Hsiang; Spree, Lukas; Koutsouflakis, Emmanouil; Krylov, Denis S.; Liu, Fupin; Brandenburg, Ariane; Velkos, Georgios; Schimmel, Sebastian; Avdoshenko, Stanislav M.; Federov, Alexander; Weschke, Eugen; Choueikani, Fadi; Ohresser, Philippe; Dreiser, Jan; Büchner, Bernd; Popov, Alexey A.
    Tremendous progress in the development of single molecule magnets (SMMs) raises the question of their device integration. On this route, understanding the properties of low‐dimensional assemblies of SMMs, in particular in contact with electrodes, is a necessary but difficult step. Here, it is shown that fullerene SMM self‐assembled on metal substrate from solution retains magnetic hysteresis up to 10 K. Fullerene‐SMM DySc2N@C80 and Dy2ScN@C80 are derivatized to introduce a thioacetate group, which is used to graft SMMs on gold. Magnetic properties of grafted SMMs are studied by X‐ray magnetic circular dichroism and compared to the films of nonderivatized fullerenes prepared by sublimation. In self‐assembled films, the magnetic moments of the Dy ions are preferentially aligned parallel to the surface, which is different from the disordered orientation of endohedral clusters in nonfunctionalized fullerenes. Whereas chemical derivatization reduces the blocking temperature of magnetization and narrows the hysteresis of Dy2ScN@C80, for DySc2N@C80 equally broad hysteresis is observed as in the fullerene multilayer. Magnetic bistability in the DySc2N@C80 grafted on gold is sustained up to 10 K. This study demonstrates that self‐assembly of fullerene‐SMM derivatives offers a facile solution‐based procedure for the preparation of functional magnetic sub‐monolayers with excellent SMM performance.
  • Item
    Robust Single Molecule Magnet Monolayers on Graphene and Graphite with Magnetic Hysteresis up to 28 K
    (Weinheim : Wiley-VCH, 2021) Spree, Lukas; Liu, Fupin; Neu, Volker; Rosenkranz, Marco; Velkos, Georgios; Wang, Yaofeng; Schiemenz, Sandra; Dreiser, Jan; Gargiani, Pierluigi; Valvidares, Manuel; Chen, Chia-Hsiang; Büchner, Bernd; Avdoshenko, Stanislav M.; Popov, Alexey A.
    The chemical functionalization of fullerene single molecule magnet Tb2@C80(CH2Ph) enables the facile preparation of robust monolayers on graphene and highly oriented pyrolytic graphite from solution without impairing their magnetic properties. Monolayers of endohedral fullerene functionalized with pyrene exhibit magnetic bistability up to a temperature of 28 K. The use of pyrene terminated linker molecules opens the way to devise integration of spin carrying units encapsulated by fullerene cages on graphitic substrates, be it single-molecule magnets or qubit candidates. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH
  • Item
    Tailoring Plasmonics of Au@Ag Nanoparticles by Silica Encapsulation
    (Weinheim : Wiley-VCH, 2021) Schultz, Johannes; Kirner, Felizitas; Potapov, Pavel; Büchner, Bernd; Lubk, Axel; Sturm, Elena V.
    Hybrid metallic nanoparticles (NPs) encapsulated in oxide shells are currently intensely studied for plasmonic applications in sensing, medicine, catalysis, and photovoltaics. Here, a method for the synthesis of Au@Ag@SiO2 cubes with a uniform silica shell of variable and adjustable thickness in the nanometer range is introduced and their excellent, highly reproducible, and tunable optical response is demonstrated. Varying the silica shell thickness, the excitation energies of the single NP plasmon modes can be tuned in a broad spectral range between 2.55 and 3.25 eV. Most importantly, a strong coherent coupling of the surface plasmons is revealed at the silver–silica interface with Mie resonances at the silica–vacuum interface leading to a significant field enhancement at the encapsulated NP surface in the range of 100% at shell thicknesses t ≃ 20 nm. Consequently, the synthesis method and the field enhancement open pathways to a widespread use of silver NPs in plasmonic applications including photonic crystals and may be transferred to other non-precious metals. © 2021 The Authors. Advanced Optical Materials published by Wiley-VCH GmbH