Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

The spectral aerosol extinction monitoring system (SÇMS): Setup, observational products, and comparisons

2014, Skupin, A., Ansmann, A., Engelmann, R., Baars, H., Müller, T.

The Spectral Aerosol Extinction Monitoring System (SÇMS) is presented that allows us to continuously measure the spectral extinction coefficient of atmospheric aerosol particles along an approximately 2.7 km long optical path at 30–50 m height above ground in Leipzig (51.3° N, 12.4° E), Germany. The fully automated instrument measures the ambient aerosol extinction coefficients from 300 to 1000 nm. The main goal of (SÇMS) observations are long-term studies of the relationship between particle extinction and relative humidity from below 40% to almost 100%. The setup is presented and observations (a case study and statistical results for 2009) are discussed in terms of time series of 550 nm particle optical depth, Ångström exponent, and particle size distribution retrieved from the spectrally resolved extinction. The SǼMS measurements are compared with simultaneously performed EARLINET (European Aerosol Research Lidar Network) lidar, AERONET (Aerosol Robotic Network) sun photometer, and in situ aerosol observations of particle size distribution and related extinction coefficients on the roof of our institute. Consistency between the different measurements is found, which corroborates the quality of the SǼMS observations. Statistical results of a period of 1 yr (2009) show mode extinction values of 0.09 km−1 (SÇMS), 0.075 km−1 (AERONET), and 0.03 km−1 (in situ). Ångström exponents for this period are 0.19 (390–880 nm,(SÇMS) and 1.55 (440–870 nm, AERONET).

Loading...
Thumbnail Image
Item

ALADINA - An unmanned research aircraft for observing vertical and horizontal distributions of ultrafine particles within the atmospheric boundary layer

2015, Altstädter, B., Platis, A., Wehner, B., Scholtz, A., Wildmann, N., Hermann, M., Käthner, R., Baars, H., Bange, J., Lampert, A.

This paper presents the unmanned research aircraft Carolo P360 "ALADINA" (Application of Light-weight Aircraft for Detecting IN situ Aerosol) for investigating the horizontal and vertical distribution of ultrafine particles in the atmospheric boundary layer (ABL). It has a wingspan of 3.6 m, a maximum take-off weight of 25 kg and is equipped with aerosol instrumentation and meteorological sensors. A first application of the system, together with the unmanned research aircraft MASC (Multi-Purpose Airborne Carrier) of the Eberhard Karls University of Tübingen (EKUT), is described. As small payload for ALADINA, two condensation particle counters (CPC) and one optical particle counter (OPC) were miniaturised by re-arranging the vital parts and composing them in a space-saving way in the front compartment of the airframe. The CPCs are improved concerning the lower detection threshold and the response time to less than 1.3 s. Each system was characterised in the laboratory and calibrated with test aerosols. The CPCs are operated in this study with two different lower detection threshold diameters of 11 and 18 nm. The amount of ultrafine particles, which is an indicator for new particle formation, is derived from the difference in number concentrations of the two CPCs (ΔN). Turbulence and thermodynamic structure of the boundary layer are described by measurements of fast meteorological sensors that are mounted at the aircraft nose. A first demonstration of ALADINA and a feasibility study were conducted in Melpitz near Leipzig, Germany, at the Global Atmosphere Watch (GAW) station of the Leibniz Institute for Tropospheric Research (TROPOS) on 2 days in October 2013. There, various ground-based instruments are installed for long-term atmospheric monitoring. The ground-based infrastructure provides valuable additional background information to embed the flights in the continuous atmospheric context and is used for validation of the airborne results. The development of the boundary layer, derived from backscatter signals of a portable Raman lidar POLLYXT, allows a quick overview of the current vertical structure of atmospheric particles. Ground-based aerosol number concentrations are consistent with the results from flights in heights of a few metres. In addition, a direct comparison of ALADINA aerosol data and ground-based aerosol data, sampling the air at the same location for more than 1 h, shows comparable values within the range of ± 20 %. MASC was operated simultaneously with complementary flight patterns. It is equipped with the same meteorological instruments that offer the possibility to determine turbulent fluxes. Therefore, additional information about meteorological conditions was collected in the lowest part of the atmosphere. Vertical profiles up to 1000 m in altitude indicate a high variability with distinct layers of aerosol, especially for the small particles of a few nanometres in diameter on 1 particular day. The stratification was almost neutral and two significant aerosol layers were detected with total aerosol number concentrations up to 17 000 ± 3400 cm−3 between 180 and 220 m altitude and 14 000 ± 2800 cm−3 between 550 and 650 m. Apart from those layers, the aerosol distribution was well mixed and reached the total number concentration of less than 8000 ± 1600 cm−3. During another day, the distribution of the small particles in the lowermost ABL was related to the stratification, with continuously decreasing number concentrations from 16 000 ± 3200 cm−3 to a minimum of 4000 ± 800 cm−3 at the top of the inversion at 320 m. Above this, the total number concentration was rather constant. In the region of 500 to 600 m altitude, a significant difference of both CPCs was observed. This event occurred during the boundary layer development in the morning and represents a particle burst within the ABL.

Loading...
Thumbnail Image
Item

General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) – integrating aerosol research from nano to global scales

2011, Kulmala, M., Asmi, A., Lappalainen, H.K., Carslaw, K.S., Pöschl, U., Baltensperger, U., Hov, Ø., Brenquier, J.-L., Pandis, S.N., Facchini, M.C., Hansson, H.-C., Wiedensohler, A., O'Dowd, C.D., Boers, R., Boucher, O., de Leeuw, G., Denier van der Gon, H.A.C., Feichter, J., Krejci, R., Laj, P., Lihavainen, H., Lohmann, U., McFiggans, G., Mentel, T., Pilinis, C., Riipinen, I., Schulz, M., Stohl, A., Swietlicki, E., Vignati, E., Alves, C., Amann, M., Ammann, M., Arabas, S., Artaxo, P., Baars, H., Beddows, D.C.S., Bergström, R., Beukes, J.P., Bilde, M., Burkhart, J.F., Canonaco, F., Clegg, S.L., Coe, H., Crumeyrolle, S., D'Anna, B., Decesari, S., Gilardoni, S., Fischer, M., Fjaeraa, A.M., Fountoukis, C., George, C., Gomes, L., Halloran, P., Hamburger, T., Harrison, R.M., Herrmann, H., Hoffmann, T., Hoose, C., Hu, M., Hyvärinen, A., Hõrrak, U., Iinuma, Y., Iversen, T., Josipovic, M., Kanakidou, M., Kiendler-Scharr, A., Kirkevåg, A., Kiss, G., Klimont, Z., Kolmonen, P., Komppula, M., Kristjánsson, J.-E., Laakso, L., Laaksonen, A., Labonnote, L., Lanz, V.A., Lehtinen, K.E.J., Rizzo, L.V., Makkonen, R., Manninen, H.E., McMeeking, G., Merikanto, J., Minikin, A., Mirme, S., Morgan, W.T., Nemitz, E., O'Donnell, D., Panwar, T.S., Pawlowska, H., Petzold, A., Pienaar, J.J., Pio, C., Plass-Duelmer, C., Prévôt, A.S.H., Pryor, S., Reddington, C.L., Roberts, G., Rosenfeld, D., Schwarz, J., Seland, Ø., Sellegri, K., Shen, X.J., Shiraiwa, M., Siebert, H., Sierau, B., Simpson, D., Sun, J.Y., Topping, D., Tunved, P., Vaattovaara, P., Vakkari, V., Veefkind, J.P., Visschedijk, A., Vuollekoski, H., Vuolo, R., Wehner, B., Wildt, J., Woodward, S., Worsnop, D.R., van Zadelhoff, G.-J., Zardini, A.A., Zhang, K., van Zyl, P.G., Kerminen, V.-M.

In this paper we describe and summarize the main achievements of the European Aerosol Cloud Climate and Air Quality Interactions project (EUCAARI). EUCAARI started on 1 January 2007 and ended on 31 December 2010 leaving a rich legacy including: (a) a comprehensive database with a year of observations of the physical, chemical and optical properties of aerosol particles over Europe, (b) comprehensive aerosol measurements in four developing countries, (c) a database of airborne measurements of aerosols and clouds over Europe during May 2008, (d) comprehensive modeling tools to study aerosol processes fron nano to global scale and their effects on climate and air quality. In addition a new Pan-European aerosol emissions inventory was developed and evaluated, a new cluster spectrometer was built and tested in the field and several new aerosol parameterizations and computations modules for chemical transport and global climate models were developed and evaluated. These achievements and related studies have substantially improved our understanding and reduced the uncertainties of aerosol radiative forcing and air quality-climate interactions. The EUCAARI results can be utilized in European and global environmental policy to assess the aerosol impacts and the corresponding abatement strategies.