Search Results

Now showing 1 - 2 of 2
  • Item
    Californian Wildfire Smoke Over Europe: A First Example of the Aerosol Observing Capabilities of Aeolus Compared to Ground‐Based Lidar
    (Hoboken, NJ : Wiley, 2021) Baars, Holger; Radenz, Martin; Floutsi, Athena Augusta; Engelmann, Ronny; Althausen, Dietrich; Heese, Birgit; Ansmann, Albert; Flament, Thomas; Dabas, Alain; Trapon, Dimitri; Reitebuch, Oliver; Bley, Sebastian; Wandinger, Ulla
    In September 2020, extremely strong wildfires in the western United States of America (i.e., mainly in California) produced large amounts of smoke, which was lifted into the free troposphere. These biomass-burning-aerosol (BBA) layers were transported from the US west coast toward central Europe within 3–4 days turning the sky milky and receiving high media attention. The present study characterizes this pronounced smoke plume above Leipzig, Germany, using a ground-based multiwavelength-Raman-polarization lidar and the aerosol/cloud product of ESA’s wind lidar mission Aeolus. An exceptional high smoke-AOT >0.4 was measured, yielding to a mean mass concentration of 8 μg m−3. The 355 nm lidar ratio was moderate at around 40–50 sr. The Aeolus-derived backscatter, extinction and lidar ratio profiles agree well with the observations of the ground-based lidar PollyXT considering the fact that Aeolus’ aerosol and cloud products are still preliminary and subject to ongoing algorithm improvements.
  • Item
    An overview of the first decade of PollyNET: An emerging network of automated Raman-polarization lidars for continuous aerosol profiling
    (München : European Geopyhsical Union, 2016) Baars, Holger; Kanitz, Thomas; Engelmann, Ronny; Althausen, Dietrich; Heese, Birgit; Komppula, Mika; Preißler, Jana; Tesche, Matthias; Ansmann, Albert; Wandinger, Ulla; Lim, Jae-Hyun; Ahn, Joon Young; Stachlewska, Iwona S.; Amiridis, Vassilis; Marinou, Eleni; Seifert, Patric; Hofer, Julian; Skupin, Annett; Schneider, Florian; Bohlmann, Stephanie; Foth, Andreas; Bley, Sebastian; Pfüller, Anne; Giannakaki, Eleni; Lihavainen, Heikki; Viisanen, Yrjö; Hooda, Rakesh Kumar; Pereira, Sérgio Nepomuceno; Bortol, Daniele; Wagner, Frank; Mattis, Ina; Janicka, Lucja; Markowicz, Krzysztof M.; Achtert, Peggy; Artaxo, Paulo; Pauliquevis, Theotonio; Souza, Rodrigo A.F.; Sharma, Ved Prakesh; van Zyl, Pieter Gideon; Beukes, Johan Paul; Sun, Junying; Rohwer, Erich G.; Deng, Ruru; Mamouri, Rodanthi-Elisavet; Zamorano, Felix
    A global vertically resolved aerosol data set covering more than 10 years of observations at more than 20 measurement sites distributed from 63° N to 52° S and 72° W to 124° E has been achieved within the Raman and polarization lidar network PollyNET. This network consists of portable, remote-controlled multiwavelength-polarization-Raman lidars (Polly) for automated and continuous 24/7 observations of clouds and aerosols. PollyNET is an independent, voluntary, and scientific network. All Polly lidars feature a standardized instrument design with different capabilities ranging from single wavelength to multiwavelength systems, and now apply unified calibration, quality control, and data analysis. The observations are processed in near-real time without manual intervention, and are presented online at http://polly.tropos.de/. The paper gives an overview of the observations on four continents and two research vessels obtained with eight Polly systems. The specific aerosol types at these locations (mineral dust, smoke, dust-smoke and other dusty mixtures, urban haze, and volcanic ash) are identified by their Ångström exponent, lidar ratio, and depolarization ratio. The vertical aerosol distribution at the PollyNET locations is discussed on the basis of more than 55 000 automatically retrieved 30 min particle backscatter coefficient profiles at 532 nm as this operating wavelength is available for all Polly lidar systems. A seasonal analysis of measurements at selected sites revealed typical and extraordinary aerosol conditions as well as seasonal differences. These studies show the potential of PollyNET to support the establishment of a global aerosol climatology that covers the entire troposphere.