Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Vertical profiles of aerosol mass concentration derived by unmanned airborne in situ and remote sensing instruments during dust events

2018, Mamali, Dimitra, Marinou, Eleni, Sciare, Jean, Pikridas, Michael, Kokkalis, Panagiotis, Kottas, Michael, Binietoglou, Ioannis, Tsekeri, Alexandra, Keleshis, Christos, Engelmann, Ronny, Baars, Holger, Ansmann, Albert, Amiridis, Vassilis, Russchenberg, Herman, Biskos, George

In situ measurements using unmanned aerial vehicles (UAVs) and remote sensing observations can independently provide dense vertically resolved measurements of atmospheric aerosols, information which is strongly required in climate models. In both cases, inverting the recorded signals to useful information requires assumptions and constraints, and this can make the comparison of the results difficult. Here we compare, for the first time, vertical profiles of the aerosol mass concentration derived from light detection and ranging (lidar) observations and in situ measurements using an optical particle counter on board a UAV during moderate and weak Saharan dust episodes. Agreement between the two measurement methods was within experimental uncertainty for the coarse mode (i.e. particles having radii > 0.5 μm), where the properties of dust particles can be assumed with good accuracy. This result proves that the two techniques can be used interchangeably for determining the vertical profiles of aerosol concentrations, bringing them a step closer towards their systematic exploitation in climate models.

Loading...
Thumbnail Image
Item

Triple-wavelength depolarization-ratio profiling of Saharan dust over Barbados during SALTRACE in 2013 and 2014

2017, Haarig, Moritz, Ansmann, Albert, Althausen, Dietrich, Klepel, André, Groß, Silke, Freudenthaler, Volker, Toledano, Carlos, Mamouri, Rodanthi-Elisavet, Farrell, David A., Prescod, Damien A., Marinou, Eleni, Burton, Sharon P., Gasteiger, Josef, Engelmann, Ronny, Baars, Holger

Triple-wavelength polarization lidar measurements in Saharan dust layers were performed at Barbados (13.1°N, 59.6°W), 5000-8000km west of the Saharan dust sources, in the framework of the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE-1, June-July 2013, SALTRACE-3, June-July 2014). Three case studies are discussed. High quality was achieved by comparing the dust linear depolarization ratio profiles measured at 355, 532, and 1064nm with respective dual-wavelength (355, 532nm) depolarization ratio profiles measured with a reference lidar. A unique case of long-range transported dust over more than 12000km is presented. Saharan dust plumes crossing Barbados were measured with an airborne triple-wavelength polarization lidar over Missouri in the midwestern United States 7 days later. Similar dust optical properties and depolarization features were observed over both sites indicating almost unchanged dust properties within this 1 week of travel from the Caribbean to the United States. The main results of the triple-wavelength polarization lidar observations in the Caribbean in the summer seasons of 2013 and 2014 are summarized. On average, the particle linear depolarization ratios for aged Saharan dust were found to be 0.252±0.030 at 355nm, 0.280±0.020 at 532nm, and 0.225±0.022 at 1064nm after approximately 1 week of transport over the tropical Atlantic. Based on published simulation studies we present an attempt to explain the spectral features of the depolarization ratio of irregularly shaped mineral dust particles, and conclude that most of the irregularly shaped coarse-mode dust particles (particles with diameters > 1μm) have sizes around 1.5-2μm. The SALTRACE results are also set into the context of the SAMUM-1 (Morocco, 2006) and SAMUM-2 (Cabo Verde, 2008) depolarization ratio studies. Again, only minor changes in the dust depolarization characteristics were observed on the way from the Saharan dust sources towards the Caribbean.

Loading...
Thumbnail Image
Item

GARRLiC and LIRIC: Strengths and limitations for the characterization of dust and marine particles along with their mixtures

2017, Tsekeri, Alexandra, Lopatin, Anton, Amiridis, Vassilis, Marinou, Eleni, Igloffstein, Julia, Siomos, Nikolaos, Solomos, Stavros, Kokkalis, Panagiotis, Engelmann, Ronny, Baars, Holger, Gratsea, Myrto, Raptis, Panagiotis I., Binietoglou, Ioannis, Mihalopoulos, Nikolaos, Kalivitis, Nikolaos, Kouvarakis, Giorgos, Bartsotas, Nikolaos, Kallos, George, Basart, Sara, Schuettemeyer, Dirk, Wandinger, Ulla, Ansmann, Albert, Chaikovsky, Anatoli P., Dubovik, Oleg

The Generalized Aerosol Retrieval from Radiometer and Lidar Combined data algorithm (GARRLiC) and the LIdar-Radiometer Inversion Code (LIRIC) provide the opportunity to study the aerosol vertical distribution by combining ground-based lidar and sun-photometric measurements. Here, we utilize the capabilities of both algorithms for the characterization of Saharan dust and marine particles, along with their mixtures, in the south-eastern Mediterranean during the CHARacterization of Aerosol mixtures of Dust and Marine origin Experiment (CHARADMExp). Three case studies are presented, focusing on dust-dominated, marinedominated and dust-marine mixing conditions. GARRLiC and LIRIC achieve a satisfactory characterization for the dust-dominated case in terms of particle microphysical properties and concentration profiles. The marine-dominated and the mixture cases are more challenging for both algorithms, although GARRLiC manages to provide more detailed microphysical retrievals compared to AERONET, while LIRIC effectively discriminates dust and marine particles in its concentration profile retrievals. The results are also compared with modelled dust and marine concentration profiles and surface in situ measurements.

Loading...
Thumbnail Image
Item

Profiling of Saharan dust from the Caribbean to western Africa - Part 2: Shipborne lidar measurements versus forecasts

2017, Ansmann, Albert, Rittmeister, Franziska, Engelmann, Ronny, Basart, Sara, Jorba, Oriol, Spyrou, Christos, Remy, Samuel, Skupin, Annett, Baars, Holger, Seifert, Patric, Senf, Fabian, Kanitz, Thomas

A unique 4-week ship cruise from Guadeloupe to Cabo Verde in April-May 2013 see part 1, Rittmeister et al. (2017) is used for an in-depth comparison of dust profiles observed with a polarization/Raman lidar aboard the German research vessel Meteor over the remote tropical Atlantic and respective dust forecasts of a regional (SKIRON) and two global atmospheric (dust) transport models (NMMB/BSC-Dust, MACC/CAMS). New options of model-observation comparisons are presented. We analyze how well the modeled fine dust (submicrometer particles) and coarse dust contributions to light extinction and mass concentration match respective lidar observations, and to what extent models, adjusted to aerosol optical thickness observations, are able to reproduce the observed layering and mixing of dust and non-dust (mostly marine) aerosol components over the remote tropical Atlantic. Based on the coherent set of dust profiles at well-defined distances from Africa (without any disturbance by anthropogenic aerosol sources over the ocean), we investigate how accurately the models handle dust removal at distances of 1500g km to more than 5000g km west of the Saharan dust source regions. It was found that (a) dust predictions are of acceptable quality for the first several days after dust emission up to 2000g km west of the African continent, (b) the removal of dust from the atmosphere is too strong for large transport paths in the global models, and (c) the simulated fine-to-coarse dust ratio (in terms of mass concentration and light extinction) is too high in the models compared to the observations. This deviation occurs initially close to the dust sources and then increases with distance from Africa and thus points to an overestimation of fine dust emission in the models.