Search Results

Now showing 1 - 3 of 3
  • Item
    Vertical profiles of aerosol mass concentration derived by unmanned airborne in situ and remote sensing instruments during dust events
    (Katlenburg-Lindau : Copernicus, 2018) Mamali, Dimitra; Marinou, Eleni; Sciare, Jean; Pikridas, Michael; Kokkalis, Panagiotis; Kottas, Michael; Binietoglou, Ioannis; Tsekeri, Alexandra; Keleshis, Christos; Engelmann, Ronny; Baars, Holger; Ansmann, Albert; Amiridis, Vassilis; Russchenberg, Herman; Biskos, George
    In situ measurements using unmanned aerial vehicles (UAVs) and remote sensing observations can independently provide dense vertically resolved measurements of atmospheric aerosols, information which is strongly required in climate models. In both cases, inverting the recorded signals to useful information requires assumptions and constraints, and this can make the comparison of the results difficult. Here we compare, for the first time, vertical profiles of the aerosol mass concentration derived from light detection and ranging (lidar) observations and in situ measurements using an optical particle counter on board a UAV during moderate and weak Saharan dust episodes. Agreement between the two measurement methods was within experimental uncertainty for the coarse mode (i.e. particles having radii > 0.5 μm), where the properties of dust particles can be assumed with good accuracy. This result proves that the two techniques can be used interchangeably for determining the vertical profiles of aerosol concentrations, bringing them a step closer towards their systematic exploitation in climate models.
  • Item
    Application of the shipborne remote sensing supersite OCEANET for profiling of Arctic aerosols and clouds during Polarstern cruise PS106
    (Katlenburg-Lindau : Copernicus, 2020) Griesche, Hannes J.; Seifer, Patric; Ansmann, Albert; Baars, Holger; Velasco, Carola Barrientos; Bühl, Johannes; Engelmann, Ronny; Radenz, Martin; Zhenping, Yin; Macke, Andreas
    From 25 May to 21 July 2017, the research vessel Polarstern performed the cruise PS106 to the high Arctic in the region north and northeast of Svalbard. The mobile remote-sensing platform OCEANET was deployed aboard Polarstern. Within a single container, OCEANET houses state-of-the-art remote-sensing equipment, including a multiwavelength Raman polarization lidar PollyXT and a 14-channel microwave radiometer HATPRO (Humidity And Temperature PROfiler). For the cruise PS106, the measurements were supplemented by a motion-stabilized 35 GHz cloud radar Mira-35. This paper describes the treatment of technical challenges which were immanent during the deployment of OCEANET in the high Arctic. This includes the description of the motion stabilization of the cloud radar Mira-35 to ensure vertical-pointing observations aboard the moving Polarstern as well as the applied correction of the vessels heave rate to provide valid Doppler velocities. The correction ensured a leveling accuracy of ±0.5◦ during transits through the ice and an ice floe camp. The applied heave correction reduced the signal induced by the vertical movement of the cloud radar in the PSD of the Doppler velocity by a factor of 15. Low-level clouds, in addition, frequently prevented a continuous analysis of cloud conditions from synergies of lidar and radar within Cloudnet, because the technically determined lowest detection height of Mira-35 was 165 m above sea level. To overcome this obstacle, an approach for identification of the cloud presence solely based on data from the near-field receiver of PollyXT at heights from 50 m and 165 m above sea level is presented. We found low-level stratus clouds, which were below the lowest detection range of most automatic ground-based remote-sensing instruments during 25 % of the observation time. We present case studies of aerosol and cloud studies to introduce the capabilities of the data set. In addition, new approaches for ice crystal effective radius and eddy dissipation rates from cloud radar measurements and the retrieval of aerosol optical and microphysical properties from the observations of PollyXT are introduced. © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.
  • Item
    Californian Wildfire Smoke Over Europe: A First Example of the Aerosol Observing Capabilities of Aeolus Compared to Ground‐Based Lidar
    (Hoboken, NJ : Wiley, 2021) Baars, Holger; Radenz, Martin; Floutsi, Athena Augusta; Engelmann, Ronny; Althausen, Dietrich; Heese, Birgit; Ansmann, Albert; Flament, Thomas; Dabas, Alain; Trapon, Dimitri; Reitebuch, Oliver; Bley, Sebastian; Wandinger, Ulla
    In September 2020, extremely strong wildfires in the western United States of America (i.e., mainly in California) produced large amounts of smoke, which was lifted into the free troposphere. These biomass-burning-aerosol (BBA) layers were transported from the US west coast toward central Europe within 3–4 days turning the sky milky and receiving high media attention. The present study characterizes this pronounced smoke plume above Leipzig, Germany, using a ground-based multiwavelength-Raman-polarization lidar and the aerosol/cloud product of ESA’s wind lidar mission Aeolus. An exceptional high smoke-AOT >0.4 was measured, yielding to a mean mass concentration of 8 μg m−3. The 355 nm lidar ratio was moderate at around 40–50 sr. The Aeolus-derived backscatter, extinction and lidar ratio profiles agree well with the observations of the ground-based lidar PollyXT considering the fact that Aeolus’ aerosol and cloud products are still preliminary and subject to ongoing algorithm improvements.