Search Results

Now showing 1 - 10 of 13
Loading...
Thumbnail Image
Item

Mineral dust in Central Asia: Combining lidar and other measurements during the Central Asian dust experiment (CADEX)

2018, Althausen, Dietrich, Hofer, Julian, Abdullaev, Sabur, Makhmudov, Abduvosit, Baars, Holger, Engelmann, Ronny, Wadinga Fomba, Khanneh, Müller, Konrad, Schettler, Georg, Klüser, Lars, Kandler, Konrad, Nicolae, D., Makoto, A., Vassilis, A., Balis, D., Behrendt, A., Comeron, A., Gibert, F., Landulfo, E., McCormick, M.P., Senff, C., Veselovskii, I., Wandinger, U.

Mineral dust needs to be characterized comprehensively since it contributes to the climate change in Tajikistan / Central Asia. Lidar results from the measurements of mineral dust during CADEX are compared with results of sun photometer measurements, satellite-based measurements, and chemical analysis of ground samples. Although the dust is often advected from far-range sources, it impacts on the local conditions considerably.

Loading...
Thumbnail Image
Item

CADEX and beyond: Installation of a new PollyXT site in Dushanbe

2019, Engelmann, Ronny, Hofer, Julian, Makhmudov, Abduvosit N., Baars, Holger, Hanbuch, Karsten, Ansmann, Albert, Abdullaev, Sabur F., Macke, Andreas, Althausen, Dietrich

During the 18-month Central Asian Dust Experiment we conducted continuous lidar measurements at the Physical Technical Institute of the Academy of Sciences of Tajikistan in Dushanbe between 2015 and 2016. Mineral dust plumes from various source regions have been observed and characterized in terms of their occurrence, and their optical and microphysical properties with the Raman lidar PollyXT. Currently a new container-based lidar system is constructed which will be installed for continuous long-term measurements in Dushanbe. © 2019 The Authors, published by EDP Sciences.

Loading...
Thumbnail Image
Item

Central Asian Dust Experiment (CADEX): Multiwavelength polarization Raman lidar observations in Tajikistan

2016, Hofer, Julian, Althausen, Dietrich, Abdullaev, Sabur F., Engelmann, Ronny, Baars, Holger

For the first time lidar measurements of vertical aerosol profiles are conducted in Tajikistan/Central Asia. These measurements just started on March 17th, 2015. They are performed within the Central Asian Dust Experiment (CADEX) in Dushanbe and they will last at least one year. The deployed system for these observations is an updated version of the multiwavelength polarization Raman lidar PollyXT. Vertical profiles of the backscatter coefficient, the extinction coefficient, and the particle depolarization ratio are measured by this instrument. A first and preliminary measurement example of an aerosol layer over Dushanbe is shown.

Loading...
Thumbnail Image
Item

An overview of the first decade of PollyNET: An emerging network of automated Raman-polarization lidars for continuous aerosol profiling

2016, Baars, Holger, Kanitz, Thomas, Engelmann, Ronny, Althausen, Dietrich, Heese, Birgit, Komppula, Mika, Preißler, Jana, Tesche, Matthias, Ansmann, Albert, Wandinger, Ulla, Lim, Jae-Hyun, Ahn, Joon Young, Stachlewska, Iwona S., Amiridis, Vassilis, Marinou, Eleni, Seifert, Patric, Hofer, Julian, Skupin, Annett, Schneider, Florian, Bohlmann, Stephanie, Foth, Andreas, Bley, Sebastian, Pfüller, Anne, Giannakaki, Eleni, Lihavainen, Heikki, Viisanen, Yrjö, Hooda, Rakesh Kumar, Pereira, Sérgio Nepomuceno, Bortol, Daniele, Wagner, Frank, Mattis, Ina, Janicka, Lucja, Markowicz, Krzysztof M., Achtert, Peggy, Artaxo, Paulo, Pauliquevis, Theotonio, Souza, Rodrigo A.F., Sharma, Ved Prakesh, van Zyl, Pieter Gideon, Beukes, Johan Paul, Sun, Junying, Rohwer, Erich G., Deng, Ruru, Mamouri, Rodanthi-Elisavet, Zamorano, Felix

A global vertically resolved aerosol data set covering more than 10 years of observations at more than 20 measurement sites distributed from 63° N to 52° S and 72° W to 124° E has been achieved within the Raman and polarization lidar network PollyNET. This network consists of portable, remote-controlled multiwavelength-polarization-Raman lidars (Polly) for automated and continuous 24/7 observations of clouds and aerosols. PollyNET is an independent, voluntary, and scientific network. All Polly lidars feature a standardized instrument design with different capabilities ranging from single wavelength to multiwavelength systems, and now apply unified calibration, quality control, and data analysis. The observations are processed in near-real time without manual intervention, and are presented online at http://polly.tropos.de/. The paper gives an overview of the observations on four continents and two research vessels obtained with eight Polly systems. The specific aerosol types at these locations (mineral dust, smoke, dust-smoke and other dusty mixtures, urban haze, and volcanic ash) are identified by their Ångström exponent, lidar ratio, and depolarization ratio. The vertical aerosol distribution at the PollyNET locations is discussed on the basis of more than 55 000 automatically retrieved 30 min particle backscatter coefficient profiles at 532 nm as this operating wavelength is available for all Polly lidar systems. A seasonal analysis of measurements at selected sites revealed typical and extraordinary aerosol conditions as well as seasonal differences. These studies show the potential of PollyNET to support the establishment of a global aerosol climatology that covers the entire troposphere.

Loading...
Thumbnail Image
Item

EARLINET evaluation of the CATS Level 2 aerosol backscatter coefficient product

2019, Proestakis, Emmanouil, Amiridis, Vassilis, Marinou, Eleni, Binietoglou, Ioannis, Ansmann, Albert, Wandinger, Ulla, Hofer, Julian, Yorks, John, Nowottnick, Edward, Makhmudov, Abduvosit, Papayannis, Alexandros, Pietruczuk, Aleksander, Gialitaki, Anna, Apituley, Arnoud, Szkop, Artur, Muñoz Porcar, Constantino, Bortoli, Daniele, Dionisi, Davide, Althausen, Dietrich, Mamali, Dimitra, Balis, Dimitris, Nicolae, Doina, Tetoni, Eleni, Liberti, Gian Luigi, Baars, Holger, Mattis, Ina, Stachlewska, Iwona Sylwia, Voudouri, Kalliopi Artemis, Mona, Lucia, Mylonaki, Maria, Perrone, Maria Rita, Costa, Maria João, Sicard, Michael, Papagiannopoulos, Nikolaos, Siomos, Nikolaos, Burlizzi, Pasquale, Pauly, Rebecca, Engelmann, Ronny, Abdullaev, Sabur, Pappalardo, Gelsomina

We present the evaluation activity of the European Aerosol Research Lidar Network (EARLINET) for the quantitative assessment of the Level 2 aerosol backscatter coefficient product derived by the Cloud-Aerosol Transport System (CATS) aboard the International Space Station (ISS; Rodier et al., 2015). The study employs correlative CATS and EARLINET backscatter measurements within a 50km distance between the ground station and the ISS overpass and as close in time as possible, typically with the starting time or stopping time of the EARLINET performed measurement time window within 90min of the ISS overpass, for the period from February 2015 to September 2016. The results demonstrate the good agreement of the CATS Level 2 backscatter coefficient and EARLINET. Three ISS overpasses close to the EARLINET stations of Leipzig, Germany; Évora, Portugal; and Dushanbe, Tajikistan, are analyzed here to demonstrate the performance of the CATS lidar system under different conditions. The results show that under cloud-free, relative homogeneous aerosol conditions, CATS is in good agreement with EARLINET, independent of daytime and nighttime conditions. CATS low negative biases are observed, partially attributed to the deficiency of lidar systems to detect tenuous aerosol layers of backscatter signal below the minimum detection thresholds; these are biases which may lead to systematic deviations and slight underestimations of the total aerosol optical depth (AOD) in climate studies. In addition, CATS misclassification of aerosol layers as clouds, and vice versa, in cases of coexistent and/or adjacent aerosol and cloud features, occasionally leads to non-representative, unrealistic, and cloud-contaminated aerosol profiles. Regarding solar illumination conditions, low negative biases in CATS backscatter coefficient profiles, of the order of 6.1%, indicate the good nighttime performance of CATS. During daytime, a reduced signal-to-noise ratio by solar background illumination prevents retrievals of weakly scattering atmospheric layers that would otherwise be detectable during nighttime, leading to higher negative biases, of the order of 22.3%. © Author(s) 2019.

Loading...
Thumbnail Image
Item

Lidar/radar approach to quantify the dust impact on ice nucleation in mid and high level clouds

2019, Ansmann, Albert, Mamouri, Rodanthi-Elisavet, Bühl, Johannes, Seifert, Patric, Engelmann, Ronny, Nisantzi, Agyro, Hofer, Julian, Baars, Holger

We present the first attempt of a closure experiment regarding the relationship between ice nucleating particle concentration (INPC) and ice crystal number concentration (ICNC), solely based on active remote sensing. The approach combines aerosol and cloud observations with polarization lidar, Doppler lidar, and cloud radar. Several field campaigns were conducted on the island of Cyprus in the Eastern Mediterranean from 2015-2018 to study heterogeneous ice formation in altocumulus and cirrus layers embedded in Saharan dust. A case study observed on 10 April 2017 is discussed in this contribution. © 2019 The Authors, published by EDP Sciences.

Loading...
Thumbnail Image
Item

Wild fire aerosol optical properties measured by lidar at Haifa, Israel

2018, Heese, Birgit, Hofer, Julian, Baars, Holger, Engelmann, Ronny, Althausen, Dietrich, Schechner, Yoav Y., Nicolae, D., Makoto, A., Vassilis, A., Balis, D., Behrendt, A., Comeron, A., Gibert, F., Landulfo, E., McCormick, M.P., Senff, C., Veselovskii, I., Wandinger, U.

Optical properties of fresh biomass burning aerosol were measured by lidar during the wild fires in Israel in November 2016. A single-wavelength lidar Polly was operated at the Technion Campus at Haifa. The detector with originally two channels at 532 and 607 nm was recently upgraded with a cross- and a co-polarised channel at 532 nm, and a rotational Raman channel at 530.2 nm. Preliminary results show high particle depolarisation ratios probably caused by soil dust and large fly-ash particles.

Loading...
Thumbnail Image
Item

Mineral dust in central Asia: 18-month lidar measurements in Tajikistan during the central Asian dust experiment (CADEX)

2018, Hofer, Julian, Althausen, Dietrich, Abdullaev, Sabur F., Makhmudov, Abduvosit, Nazarov, Bakhron I., Schettler, Georg, Fomba, K.Wadinga, Müller, Konrad, Heinold, Bernd, Baars, Holger, Engelmann, Ronny, Ansmann, Albert, Nicolae, D., Makoto, A., Vassilis, A., Balis, D., Behrendt, A., Comeron, A., Gibert, F., Landulfo, E., McCormick, M.P., Senff, C., Veselovskii, I., Wandinger, U.

Tajikistan is often affected by atmospheric mineral dust. The direct and indirect radiative effects of dust play a sensitive role in the climate system in Central Asia. The Central Asian Dust Experiment (CADEX) provides first lidar measurements in Tajikistan. The autonomous multiwavelength polarization Raman lidar PollyXT was operated for 1.5 years (2015/16) in Dushanbe. In spring, lofted layers of long-range transported dust and in summer/ autumn, lower laying dust from local or regional sources with large optical thicknesses occurred.

Loading...
Thumbnail Image
Item

Aerosol layer heights above Tajikistan during the CADEX campaign

2019, Hofer, Julian, Althausen, Dietrich, Abdullaev, Sabur F., Nazarov, Bakhron I., Makhmudov, Abduvosit N., Baars, Holger, Engelmann, Ronny, Ansmann, Albert

Mineral dust influences climate and weather by direct and indirect effects. Surrounded by dust sources, Central Asian countries are affected by atmospheric mineral dust on a regular basis. Climate change effects like glacier retreat and desertification are prevalent in Central Asia as well. Therefore, the role of dust in the climate system in Central Asia needs to be clarified and quantified. During the Central Asian Dust EXperiment (CADEX) first lidar observations in Tajikistan were conducted. Long-term vertically resolved aerosol measurements were performed with the multiwavelength polarization Raman lidar PollyXT from March 2015 to August 2016 in Dushanbe, Tajikistan. In this contribution, a climatology of the aerosol layer heights is presented, which was retrieved from the 18-month lidar measurements. Automatic detection based on backscatter coefficient thresholds were used to retrieve the aerosol layer heights and yield similar layer heights as manual layer height determination. The significant aerosol layer height has a maximum in summer and a minimum in winter. The highest layers occurred in spring, but in summer uppermost layer heights above 6 km AGL are frequent, too. © 2019 The Authors, published by EDP Sciences.

Loading...
Thumbnail Image
Item

Long-term profiling of mineral dust and pollution aerosol with multiwavelength polarization Raman lidar at the Central Asian site of Dushanbe, Tajikistan: Case studies

2017, Hofer, Julian, Althausen, Dietrich, Abdullaev, Sabur F., Makhmudov, Abduvosit N., Nazarov, Bakhron I., Schettler, Georg, Engelmann, Ronny, Baars, Holger, Fomba, K.Wadinga, Müller, Konrad, Heinold, Bernd, Kandler, Konrad, Ansmann, Albert

For the first time, continuous vertically resolved aerosol measurements were performed by lidar in Tajikistan, Central Asia. Observations with the multiwavelength polarization Raman lidar PollyXT were conducted during CADEX (Central Asian Dust EXperiment) in Dushanbe, Tajikistan, from March 2015 to August 2016. Co-located with the lidar, a sun photometer was also operated. The goal of CADEX is to provide an unprecedented data set on vertically resolved aerosol optical properties in Central Asia, an area highly affected by climate change but largely missing vertically resolved aerosol measurements. During the 18-month measurement campaign, mineral dust was detected frequently from ground to the cirrus level height. In this study, an overview of the measurement period is given and four typical but different example measurement cases are discussed in detail. Three of them are dust cases and one is a contrasting pollution aerosol case. Vertical profiles of the measured optical properties and the calculated dust and non-dust mass concentrations are presented. Dust source regions were identified by means of backward trajectory analyses. A lofted layer of Middle Eastern dust with an aerosol optical thickness (AOT) of 0.4 and an extinction-related Ångström exponent of 0.41 was measured. In comparison, two near-ground dust cases have Central Asian sources. One is an extreme dust event with an AOT of 1.5 and Ångström exponent of 0.12 and the other one is a most extreme dust event with an AOT of above 4 (measured by sun photometer) and an Ångström exponent of −0.08. The observed lidar ratios (and particle linear depolarization ratios) in the presented dust cases range from 40.3 to 46.9sr (and 0.18–0.29) at 355nm and from 35.7 to 42.9sr (0.31–0.35) at 532nm wavelength. The particle linear depolarization ratios indicate almost unpolluted dust in the case of a lofted dust layer and pure dust in the near-ground dust cases. The lidar ratio values are lower than typical lidar ratio values for Saharan dust (50–60sr) and comparable to Middle Eastern or west-Asian dust lidar ratios (35–45sr). In contrast, the presented case of pollution aerosol of local origin has an Ångström exponent of 2.07 and a lidar ratio (particle linear depolarization ratio) of 55.8sr (0.03) at 355nm and 32.8sr (0.08) at 532nm wavelength.