Search Results

Now showing 1 - 7 of 7
  • Item
    An automatic observation-based aerosol typing method for EARLINET
    (Katlenburg-Lindau : EGU, 2018) Papagiannopoulos, Nikolaos; Mona, Lucia; Amodeo, Aldo; D'Amico, Giuseppe; Gumà Claramunt, Pilar; Pappalardo, Gelsomina; Alados-Arboledas, Lucas; Guerrero-Rascado, Juan Luís; Amiridis, Vassilis; Kokkalis, Panagiotis; Apituley, Arnoud; Baars, Holger; Schwarz, Anja; Wandinger, Ulla; Binietoglou, Ioannis; Nicolae, Doina; Bortoli, Daniele; Comerón, Adolfo; Rodríguez-Gómez, Alejandro; Sicard, Michaël; Papayannis, Alex; Wiegner, Matthias
    We present an automatic aerosol classification method based solely on the European Aerosol Research Lidar Network (EARLINET) intensive optical parameters with the aim of building a network-wide classification tool that could provide near-real-time aerosol typing information. The presented method depends on a supervised learning technique and makes use of the Mahalanobis distance function that relates each unclassified measurement to a predefined aerosol type. As a first step (training phase), a reference dataset is set up consisting of already classified EARLINET data. Using this dataset, we defined 8 aerosol classes: clean continental, polluted continental, dust, mixed dust, polluted dust, mixed marine, smoke, and volcanic ash. The effect of the number of aerosol classes has been explored, as well as the optimal set of intensive parameters to separate different aerosol types. Furthermore, the algorithm is trained with literature particle linear depolarization ratio values. As a second step (testing phase), we apply the method to an already classified EARLINET dataset and analyze the results of the comparison to this classified dataset. The predictive accuracy of the automatic classification varies between 59% (minimum) and 90% (maximum) from 8 to 4 aerosol classes, respectively, when evaluated against pre-classified EARLINET lidar. This indicates the potential use of the automatic classification to all network lidar data. Furthermore, the training of the algorithm with particle linear depolarization values found in the literature further improves the accuracy with values for all the aerosol classes around 80%. Additionally, the algorithm has proven to be highly versatile as it adapts to changes in the size of the training dataset and the number of aerosol classes and classifying parameters. Finally, the low computational time and demand for resources make the algorithm extremely suitable for the implementation within the single calculus chain (SCC), the EARLINET centralized processing suite.
  • Item
    The unprecedented 2017–2018 stratospheric smoke event: decay phase and aerosol properties observed with the EARLINET
    (Katlenburg-Lindau : EGU, 2019) Baars, Holger; Ansmann, Albert; Ohneiser, Kevin; Haarig, Moritz; Engelmann, Ronny; Althausen, Dietrich; Hanssen, Ingrid; Gausa, Michael; Pietruczuk, Aleksander; Szkop, Artur; Stachlewska, Iwona S.; Wang, Dongxiang; Reichardt, Jens; Skupin, Annett; Mattis, Ina; Trickl, Thomas; Vogelmann, Hannes; Navas-Guzmán, Francisco; Haefele, Alexander; Acheson, Karen; Ruth, Albert A.; Tatarov, Boyan; Müller, Detlef; Hu, Qiaoyun; Podvin, Thierry; Goloub, Philippe; Veselovskii, Igor; Pietras, Christophe; Haeffelin, Martial; Fréville, Patrick; Sicard, Michaël; Comerón, Adolfo; García, Alfonso Javier Fernández; Molero Menéndez, Francisco; Córdoba-Jabonero, Carmen; Guerrero-Rascado, Juan Luis; Alados-Arboledas, Lucas; Bortoli, Daniele; Costa, Maria João; Dionisi, Davide; Liberti, Gian Luigi; Wang, Xuan; Sannino, Alessia; Papagiannopoulos, Nikolaos; Boselli, Antonella; Mona, Lucia; D’Amico, Guiseppe; Romano, Salvatore; Perrone, Maria Rita; Belegante, Livio; Nicolae, Doina; Grigorov, Ivan; Gialitaki, Anna; Amiridis, Vassilis; Soupiona, Ourania; Papayannis, Alexandros; Mamouri, Rodanthi-Elisaveth; Nisantzi, Argyro; Heese, Birgit; Hofer, Julian; Schechner, Yoav Y.; Wandinger, Ulla; Pappalardo, Gelsomina
    Six months of stratospheric aerosol observations with the European Aerosol Research Lidar Network (EARLINET) from August 2017 to January 2018 are presented. The decay phase of an unprecedented, record-breaking stratospheric perturbation caused by wildfire smoke is reported and discussed in terms of geometrical, optical, and microphysical aerosol properties. Enormous amounts of smoke were injected into the upper troposphere and lower stratosphere over fire areas in western Canada on 12 August 2017 during strong thunderstorm–pyrocumulonimbus activity. The stratospheric fire plumes spread over the entire Northern Hemisphere in the following weeks and months. Twenty-eight European lidar stations from northern Norway to southern Portugal and the eastern Mediterranean monitored the strong stratospheric perturbation on a continental scale. The main smoke layer (over central, western, southern, and eastern Europe) was found at heights between 15 and 20 km since September 2017 (about 2 weeks after entering the stratosphere). Thin layers of smoke were detected at heights of up to 22–23 km. The stratospheric aerosol optical thickness at 532 nm decreased from values > 0.25 on 21–23 August 2017 to 0.005–0.03 until 5–10 September and was mainly 0.003–0.004 from October to December 2017 and thus was still significantly above the stratospheric background (0.001–0.002). Stratospheric particle extinction coefficients (532 nm) were as high as 50–200 Mm−1 until the beginning of September and on the order of 1 Mm−1 (0.5–5 Mm−1) from October 2017 until the end of January 2018. The corresponding layer mean particle mass concentration was on the order of 0.05–0.5 µg m−3 over these months. Soot particles (light-absorbing carbonaceous particles) are efficient ice-nucleating particles (INPs) at upper tropospheric (cirrus) temperatures and available to influence cirrus formation when entering the tropopause from above. We estimated INP concentrations of 50–500 L−1 until the first days in September and afterwards 5–50 L−1 until the end of the year 2017 in the lower stratosphere for typical cirrus formation temperatures of −55 ∘C and an ice supersaturation level of 1.15. The measured profiles of the particle linear depolarization ratio indicated a predominance of nonspherical smoke particles. The 532 nm depolarization ratio decreased slowly with time in the main smoke layer from values of 0.15–0.25 (August–September) to values of 0.05–0.10 (October–November) and < 0.05 (December–January). The decrease of the depolarization ratio is consistent with aging of the smoke particles, growing of a coating around the solid black carbon core (aggregates), and thus change of the shape towards a spherical form. We found ascending aerosol layer features over the most southern European stations, especially over the eastern Mediterranean at 32–35∘ N, that ascended from heights of about 18–19 to 22–23 km from the beginning of October to the beginning of December 2017 (about 2 km per month). We discuss several transport and lifting mechanisms that may have had an impact on the found aerosol layering structures.
  • Item
    Earlinet database: New design and new products for a wider use of aerosol lidar data
    (Les Ulis : EDP Sciences, 2018) Mona, Lucia; D’Amico, Giuseppe; Amato, Francesco; Linné, Holger; Baars, Holger; Wandinger, Ulla; Pappalardo, Gelsomina; Nicolae, D.; Makoto, A.; Vassilis, A.; Balis, D.; Behrendt, A.; Comeron, A.; Gibert, F.; Landulfo, E.; McCormick, M.P.; Senff, C.; Veselovskii, I.; Wandinger, U.
    The EARLINET database is facing a complete reshaping to meet the wide request for more intuitive products and to face the even wider request related to the new initiatives such as Copernicus, the European Earth observation programme. The new design has been carried out in continuity with the past, to take advantage from long-term database. In particular, the new structure will provide information suitable for synergy with other instruments, near real time (NRT) applications, validation and process studies and climate applications.
  • Item
    EARLINET evaluation of the CATS Level 2 aerosol backscatter coefficient product
    (Katlenburg-Lindau : EGU, 2019) Proestakis, Emmanouil; Amiridis, Vassilis; Marinou, Eleni; Binietoglou, Ioannis; Ansmann, Albert; Wandinger, Ulla; Hofer, Julian; Yorks, John; Nowottnick, Edward; Makhmudov, Abduvosit; Papayannis, Alexandros; Pietruczuk, Aleksander; Gialitaki, Anna; Apituley, Arnoud; Szkop, Artur; Muñoz Porcar, Constantino; Bortoli, Daniele; Dionisi, Davide; Althausen, Dietrich; Mamali, Dimitra; Balis, Dimitris; Nicolae, Doina; Tetoni, Eleni; Liberti, Gian Luigi; Baars, Holger; Mattis, Ina; Stachlewska, Iwona Sylwia; Voudouri, Kalliopi Artemis; Mona, Lucia; Mylonaki, Maria; Perrone, Maria Rita; Costa, Maria João; Sicard, Michael; Papagiannopoulos, Nikolaos; Siomos, Nikolaos; Burlizzi, Pasquale; Pauly, Rebecca; Engelmann, Ronny; Abdullaev, Sabur; Pappalardo, Gelsomina
    We present the evaluation activity of the European Aerosol Research Lidar Network (EARLINET) for the quantitative assessment of the Level 2 aerosol backscatter coefficient product derived by the Cloud-Aerosol Transport System (CATS) aboard the International Space Station (ISS; Rodier et al., 2015). The study employs correlative CATS and EARLINET backscatter measurements within a 50km distance between the ground station and the ISS overpass and as close in time as possible, typically with the starting time or stopping time of the EARLINET performed measurement time window within 90min of the ISS overpass, for the period from February 2015 to September 2016. The results demonstrate the good agreement of the CATS Level 2 backscatter coefficient and EARLINET. Three ISS overpasses close to the EARLINET stations of Leipzig, Germany; Évora, Portugal; and Dushanbe, Tajikistan, are analyzed here to demonstrate the performance of the CATS lidar system under different conditions. The results show that under cloud-free, relative homogeneous aerosol conditions, CATS is in good agreement with EARLINET, independent of daytime and nighttime conditions. CATS low negative biases are observed, partially attributed to the deficiency of lidar systems to detect tenuous aerosol layers of backscatter signal below the minimum detection thresholds; these are biases which may lead to systematic deviations and slight underestimations of the total aerosol optical depth (AOD) in climate studies. In addition, CATS misclassification of aerosol layers as clouds, and vice versa, in cases of coexistent and/or adjacent aerosol and cloud features, occasionally leads to non-representative, unrealistic, and cloud-contaminated aerosol profiles. Regarding solar illumination conditions, low negative biases in CATS backscatter coefficient profiles, of the order of 6.1%, indicate the good nighttime performance of CATS. During daytime, a reduced signal-to-noise ratio by solar background illumination prevents retrievals of weakly scattering atmospheric layers that would otherwise be detectable during nighttime, leading to higher negative biases, of the order of 22.3%. © Author(s) 2019.
  • Item
    Experimental techniques for the calibration of lidar depolarization channels in EARLINET
    (Katlenburg-Lindau : Copernicus, 2018) Belegante, Livio; Bravo-Aranda, Juan Antonio; Freudenthaler, Volker; Nicolae, Doina; Nemuc, Anca; Ene, Dragos; Alados-Arboledas, Lucas; Amodeo, Aldo; Pappalardo, Gelsomina; D'Amico, Giuseppe; Amato, Francesco; Engelmann, Ronny; Baars, Holger; Wandinger, Ulla; Papayannis, Alexandros; Kokkalis, Panos; Pereira, Sérgio N.
    Particle depolarization ratio retrieved from lidar measurements are commonly used for aerosol-typing studies, microphysical inversion, or mass concentration retrievals. The particle depolarization ratio is one of the primary parameters that can differentiate several major aerosol components but only if the measurements are accurate enough. The accuracy related to the retrieval of particle depolarization ratios is the driving factor for assessing and improving the uncertainties of the depolarization products. This paper presents different depolarization calibration procedures used to improve the quality of the depolarization data. The results illustrate a significant improvement of the depolarization lidar products for all the selected lidar stations that have implemented depolarization calibration procedures. The calibrated volume and particle depolarization profiles at 532-nm show values that fall within a range that is generally accepted in the literature.
  • Item
    Earlinet validation of CATS L2 product
    (Les Ulis : EDP Sciences, 2018) Proestakis, Emmanouil; Amiridis, Vassilis; Kottas, Michael; Marinou, Eleni; Binietoglou, Ioannis; Ansmann, Albert; Wandinger, Ulla; Yorks, John; Nowottnick, Edward; Makhmudov, Abduvosit; Papayannis, Alexandros; Pietruczuk, Aleksander; Gialitaki, Anna; Apituley, Arnoud; Muñoz-Porcar, Constantino; Bortoli, Daniele; Dionisi, Davide; Althausen, Dietrich; Mamali, Dimitra; Balis, Dimitris; Nicolae, Doina; Tetoni, Eleni; Luigi Liberti, Gian; Baars, Holger; Stachlewska, Iwona S.; Voudouri, Kalliopi-Artemis; Mona, Lucia; Mylonaki, Maria; Rita Perrone, Maria; João Costa, Maria; Sicard, Michael; Papagiannopoulos, Nikolaos; Siomos, Nikolaos; Burlizzi, Pasquale; Engelmann, Ronny; Abdullaev, Sabur F.; Hofer, Julian; Pappalardo, Gelsomina; Nicolae, D.; Makoto, A.; Vassilis, A.; Balis, D.; Behrendt, A.; Comeron, A.; Gibert, F.; Landulfo, E.; McCormick, M.P.; Senff, C.; Veselovskii, I.; Wandinger, U.
    The Cloud-Aerosol Transport System (CATS) onboard the International Space Station (ISS), is a lidar system providing vertically resolved aerosol and cloud profiles since February 2015. In this study, the CATS aerosol product is validated against the aerosol profiles provided by the European Aerosol Research Lidar Network (EARLINET). This validation activity is based on collocated CATS-EARLINET measurements and the comparison of the particle backscatter coefficient at 1064nm.
  • Item
    An automatic aerosol classification for earlinet: Application and results
    (Les Ulis : EDP Sciences, 2018) Papagiannopoulos, Nikolaos; Mona, Lucia; Amiridis, Vassilis; Binietoglou, Ioannis; D’Amico, Giuseppe; Guma-Claramunt, P.; Schwarz, Anja; Alados-Arboledas, Lucas; Amodeo, Aldo; Apituley, Arnoud; Baars, Holger; Bortoli, Daniele; Comeron, Adolfo; Guerrero-Rascado, Juan Luis; Kokkalis, Panos; Nicolae, Doina; Papayannis, Alex; Pappalardo, Gelsomina; Wandinger, Ulla; Wiegner, Matthias; Nicolae, D.; Makoto, A.; Vassilis, A.; Balis, D.; Behrendt, A.; Comeron, A.; Gibert, F.; Landulfo, E.; McCormick, M.P.; Senff, C.; Veselovskii, I.; Wandinger, U.
    Aerosol typing is essential for understanding the impact of the different aerosol sources on climate, weather system and air quality. An aerosol classification method for EARLINET (European Aerosol Research Lidar Network) measurements is introduced which makes use the Mahalanobis distance classifier. The performance of the automatic classification is tested against manually classified EARLINET data. Results of the application of the method to an extensive aerosol dataset will be presented.