Search Results

Now showing 1 - 10 of 12
  • Item
    Observation of Arabian and Saharan dust in Cyprus with a new generation of the smart Raman lidar Polly
    (Les Ulis : EDP Sciences, 2016) Engelmann, Ronny; Ansmann, Albert; Bühl, Johannes; Heese, Birgit; Baars, Holger; Althausen, Dietrich; Marinou, Eleni; Amiridis, Vassilis; Mamouri, Rodanthi-Elisavet; Vrekoussis, Mihalis
    The atmospheric science community demands for autonomous and quality-assured vertically resolved measurements of aerosol and cloud properties. Aiming this goal, TROPOS developed the fully automated multiwavelength polarization Raman lidar Polly since over 10 years [1, 2]. In cooperation with different partner research institutes the system was improved continuously. Our latest lidar developments include aside the “3+2” measurements also a near-range receiver to measure aerosol extinction and backscatter down to 120 m above the lidar, a water-vapor channel, and measurements of the linear depolarization at two wavelengths. The latest system was built in cooperation with the National Observatory of Athens (NOA). Its first campaign however was performed at the Cyprus Institute of Nicosia from March to April 2015, aiming specifically at the observation of ice nuclei with in-situ and lidar remote sensing techniques in the framework of BACCHUS [3, 4].
  • Item
    Measurement of the linear depolarization ratio of aged dust at three wavelengths (355, 532 and 1064 nm) simultaneously over Barbados
    (Les Ulis : EDP Sciences, 2016) Haarig, Moritz; Althausen, Dietrich; Ansmann, Albert; Klepel, André; Baars, Holger; Engelmann, Ronny; Groß, Silke; Freudenthaler, Volker
    A ground-based polarization Raman lidar is presented, that is able to measure the depolarization ratio at three wavelengths (355, 532 and 1064 nm) simultaneously. This new feature is implemented for the first time in a Raman lidar. It provides a full dataset of 3 backscatter coefficients, two extinction coefficients and 3 depolarization ratios (3+2+3 lidar system). To ensure the data quality, it has been compared to the well characterized two-wavelength polarization lidar POLIS. Measurements of long-range transported dust have been performed in the framework of the Saharan Aerosol Long-Range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE) in the Caribbean.
  • Item
    HETEAC: The Aerosol Classification model for EarthCARE
    (Les Ulis : EDP Sciences, 2016) Wandinger, Ulla; Baars, Holger; Engelmann, Ronny; Hünerbein, Anja; Horn, Stefan; Kanitz, Thomas; Donovan, David; van Zadelhoff, Gerd-Jan; Daou, David; Fischer, Jürgen; von Bismarck, Jonas; Filipitsch, Florian; Docter, Nicole; Eisinger, Michael; Lajas, Dulce; Wehr, Tobias
    We introduce the Hybrid End-To-End Aerosol Classification (HETEAC) model for the upcoming EarthCARE mission. The model serves as the common baseline for development, evaluation, and implementation of EarthCARE algorithms. It shall ensure the consistency of different aerosol products from the multi-instrument platform as well as facilitate the conform specification of broad-band optical properties necessary for the EarthCARE radiative closure efforts. The hybrid approach ensures the theoretical description of aerosol microphysics consistent with the optical properties of various aerosol types known from observations. The end-to-end model permits the uniform representation of aerosol types in terms of microphysical, optical and radiative properties.
  • Item
    Aerosol properties over Southeastern China from multi-wavelength Raman and depolarization lidar measurements
    (Les Ulis : EDP Sciences, 2016) Heese, Birgit; Althausen, Dietrich; Baars, Holger; Bohlmann, Stephanie; Deng, Ruru
    A dataset of particle optical properties of highly polluted urban aerosol over the Pearl River Delta, Guangzhou, China is presented. The data were derived from multi-wavelengths Raman and depolarization lidar PollyXT and AERONET sun photometer measurements. The measurement campaign was conducted from Nov 2011 to June 2012. High aerosol optical depth was observed in the polluted atmosphere over this megacity, with a mean value of 0.54 ± 0.33 and a peak value of even 1.9. For the particle characterization the lidar ratio and the linear particle depolarization ratio, both at 532 nm, were used. The mean values of these properties are 48.0 sr ± 10.7 sr for the lidar ratio and 4%+-4% for the particle depolarization ratio, which means most depolarization measurements stayed below 10%. So far, most of these results indicate urban pollution particles mixed with particles arisen from biomass and industrial burning.
  • Item
    Lidar/radar approach to quantify the dust impact on ice nucleation in mid and high level clouds
    (Les Ulis : EDP Sciences, 2019) Ansmann, Albert; Mamouri, Rodanthi-Elisavet; Bühl, Johannes; Seifert, Patric; Engelmann, Ronny; Nisantzi, Agyro; Hofer, Julian; Baars, Holger
    We present the first attempt of a closure experiment regarding the relationship between ice nucleating particle concentration (INPC) and ice crystal number concentration (ICNC), solely based on active remote sensing. The approach combines aerosol and cloud observations with polarization lidar, Doppler lidar, and cloud radar. Several field campaigns were conducted on the island of Cyprus in the Eastern Mediterranean from 2015-2018 to study heterogeneous ice formation in altocumulus and cirrus layers embedded in Saharan dust. A case study observed on 10 April 2017 is discussed in this contribution. © 2019 The Authors, published by EDP Sciences.
  • Item
    Application of the Garrlic algorithm for the characterization of dust and marine particles utilizing the lidar-sunphotometer synergy
    (Les Ulis : EDP Sciences, 2016) Tsekeri, Alexandra; Amiridis, Vassilis; Lopatin, Anton; Marinou, Eleni; Kokkalis, Panos; Solomos, Stavros; Engelmann, Ronny; Baars, Holger; Wandinger, Ulla; Ansmann, Albert; Schüttemeyer, Dirk; Dubovik, Oleg
    The importance of studying the vertical distribution of aerosol plumes is prominent in regional and climate studies. The new Generalized Aerosol Retrieval from Radiometer and Lidar Combined data algorithm (GARRLiC) provides this opportunity combining active and passive ground-based remote sensing from lidar and sunphotometer measurements. Here, we utilize GARRLiC capabilities for the characterization of Saharan dust and marine particles at the Eastern Mediterranean region during the Characterization of Aerosol mixtures of Dust And Marine origin Experiment (CHARADMExp). Two different case studies are presented, a dust-dominated case which we managed to characterize successfully in terms of the particle microphysical properties and their vertical distribution and a case of two separate layers of marine and dust particles for which the characterization proved to be more challenging.
  • Item
    Free tropospheric aerosols over South Africa
    (Les Ulis : EDP Sciences, 2016) Elina, Giannakaki; Pfüller, Anne; Korhonen, Kimmo; Mielonen, Tero; Laakso, Lauri; Vakkari, Ville; Baars, Holger; Engelmann, Ronny; Beukes, Johan P.; Van Zyl, Pieter G.; Josipovic, Miroslav; Tiitta, Petri; Chiloane, Kgaugelo; Piketh, Stuart; Lihavainen, Heikki; Lehtinen, Kari
    Raman lidar data of one year was been analyzed to obtain information relating aerosol layers in the free troposphere over South Africa, Elandsfontein. In total, 375 layers were observed above the boundary layer during the period 30th January 2010 – 31st January 2011. The seasonal behavior of aerosol layer geometrical characteristics as well as intensive and extensive optical properties were studied. In general, layers were observed at higher altitudes during spring (2520 ± 970 m) while the geometrical layer depth did not show any significant seasonal dependence. The variations of most of the intensive and extensive optical properties analyzed were high during all seasons. Layers were observed at mean altitude of 2100 m ± 1000 m with lidar ratio at 355 nm of 67 ± 25 and extinction-related Ångström exponent between 355 and 532 nm of 1.9 ± 0.8.
  • Item
    Estimation of dust related ice nucleating particles in the atmosphere: Comparison of profiling and in-situ measurements
    (Les Ulis : EDP Sciences, 2019) Haarig, Moritz; Ansmann, Albert; Walser, Adrian; Baars, Holger; Urbanneck, Claudia; Weinzierl, Bernadett; Schöberl, Manuel; Dollner, Maximilian; Mamouri, Rodanthi; Althausen, Dietrich
    Vertical profiles of number concentrations of dust particles relevant for ice nucleation in clouds are derived from lidar measurements. The results are compared to coincidental airborne in-situ measurements of particle number and surface area concentrations in the dust layer. The observations were performed in long-range transported Saharan dust at Barbados and Asian dust at Cyprus. The Asian dust data analysis is ongoing. A comparison of Asian and Saharan dust will be given at the conference. Concentrations of ice nucleating particles in the order of 10 to 1000 per cm-3 in the dust layer are derived for a temperature of-25°C at Barbados. The method can be used to continuously monitor the concentration of ice nucleating dust particles vertically resolved from lidar measurements. © 2019 The Authors, published by EDP Sciences.
  • Item
    CADEX and beyond: Installation of a new PollyXT site in Dushanbe
    (Les Ulis : EDP Sciences, 2019) Engelmann, Ronny; Hofer, Julian; Makhmudov, Abduvosit N.; Baars, Holger; Hanbuch, Karsten; Ansmann, Albert; Abdullaev, Sabur F.; Macke, Andreas; Althausen, Dietrich
    During the 18-month Central Asian Dust Experiment we conducted continuous lidar measurements at the Physical Technical Institute of the Academy of Sciences of Tajikistan in Dushanbe between 2015 and 2016. Mineral dust plumes from various source regions have been observed and characterized in terms of their occurrence, and their optical and microphysical properties with the Raman lidar PollyXT. Currently a new container-based lidar system is constructed which will be installed for continuous long-term measurements in Dushanbe. © 2019 The Authors, published by EDP Sciences.
  • Item
    Central Asian Dust Experiment (CADEX): Multiwavelength polarization Raman lidar observations in Tajikistan
    (Les Ulis : EDP Sciences, 2016) Hofer, Julian; Althausen, Dietrich; Abdullaev, Sabur F.; Engelmann, Ronny; Baars, Holger
    For the first time lidar measurements of vertical aerosol profiles are conducted in Tajikistan/Central Asia. These measurements just started on March 17th, 2015. They are performed within the Central Asian Dust Experiment (CADEX) in Dushanbe and they will last at least one year. The deployed system for these observations is an updated version of the multiwavelength polarization Raman lidar PollyXT. Vertical profiles of the backscatter coefficient, the extinction coefficient, and the particle depolarization ratio are measured by this instrument. A first and preliminary measurement example of an aerosol layer over Dushanbe is shown.