Search Results

Now showing 1 - 7 of 7
  • Item
    EARLINET instrument intercomparison campaigns: Overview on strategy and results
    (München : European Geopyhsical Union, 2016) Wandinger, Ulla; Freudenthaler, Volker; Baars, Holger; Amodeo, Aldo; Engelmann, Ronny; Mattis, Ina; Groß, Silke; Pappalardo, Gelsomina; Giunta, Aldo; D'Amico, Giuseppe; Chaikovsky, Anatoli; Osipenko, Fiodor; Slesar, Alexander; Nicolae, Doina; Belegante, Livio; Talianu, Camelia; Serikov, Ilya; Linné, Holger; Jansen, Friedhelm; Apituley, Arnoud; Wilson, Keith M.; de Graaf, Martin; Trickl, Thomas; Giehl, Helmut; Adam, Mariana; Comerón, Adolfo; Muñoz-Porcar, Constantino; Rocadenbosch, Francesc; Sicard, Michaël; Tomás, Sergio; Lange, Diego; Kumar, Dhiraj; Pujadas, Manuel; Molero, Francisco; Fernández, Alfonso J.; Alados-Arboledas, Lucas; Bravo-Aranda, Juan Antonio; Navas-Guzmán, Francisco; Guerrero-Rascado, Juan Luis; Granados-Muñoz, María José; Preißler, Jana; Wagner, Frank; Gausa, Michael; Grigorov, Ivan; Stoyanov, Dimitar; Iarlori, Marco; Rizi, Vincenco; Spinelli, Nicola; Boselli, Antonella; Wang, Xuan; Feudo, Teresa Lo; Perrone, Maria Rita; De Tomas, Ferdinando; Burlizzi, Pasquale
    This paper introduces the recent European Aerosol Research Lidar Network (EARLINET) quality-assurance efforts at instrument level. Within two dedicated campaigns and five single-site intercomparison activities, 21 EARLINET systems from 18 EARLINET stations were intercompared between 2009 and 2013. A comprehensive strategy for campaign setup and data evaluation has been established. Eleven systems from nine EARLINET stations participated in the EARLINET Lidar Intercomparison 2009 (EARLI09). In this campaign, three reference systems were qualified which served as traveling standards thereafter. EARLINET systems from nine other stations have been compared against these reference systems since 2009. We present and discuss comparisons at signal and at product level from all campaigns for more than 100 individual measurement channels at the wavelengths of 355, 387, 532, and 607 nm. It is shown that in most cases, a very good agreement of the compared systems with the respective reference is obtained. Mean signal deviations in predefined height ranges are typically below ±2 %. Particle backscatter and extinction coefficients agree within ±2  ×  10−4 km−1 sr−1 and ± 0.01 km−1, respectively, in most cases. For systems or channels that showed larger discrepancies, an in-depth analysis of deficiencies was performed and technical solutions and upgrades were proposed and realized. The intercomparisons have reinforced confidence in the EARLINET data quality and allowed us to draw conclusions on necessary system improvements for some instruments and to identify major challenges that need to be tackled in the future.
  • Item
    EARLINET Single Calculus Chain – technical – Part 2: Calculation of optical products
    (München : European Geopyhsical Union, 2016) Mattis, Ina; D'Amico, Giuseppe; Baars, Holger; Amodeo, Aldo; Madonna, Fabio; Iarlori, Marco
    In this paper we present the automated software tool ELDA (EARLINET Lidar Data Analyzer) for the retrieval of profiles of optical particle properties from lidar signals. This tool is one of the calculus modules of the EARLINET Single Calculus Chain (SCC) which allows for the analysis of the data of many different lidar systems of EARLINET in an automated, unsupervised way. ELDA delivers profiles of particle extinction coefficients from Raman signals as well as profiles of particle backscatter coefficients from combinations of Raman and elastic signals or from elastic signals only. Those analyses start from pre-processed signals which have already been corrected for background, range dependency and hardware specific effects. An expert group reviewed all algorithms and solutions for critical calculus subsystems which are used within EARLINET with respect to their applicability for automated retrievals. Those methods have been implemented in ELDA. Since the software was designed in a modular way, it is possible to add new or alternative methods in future. Most of the implemented algorithms are well known and well documented, but some methods have especially been developed for ELDA, e.g., automated vertical smoothing and temporal averaging or the handling of effective vertical resolution in the case of lidar ratio retrievals, or the merging of near-range and far-range products. The accuracy of the retrieved profiles was tested following the procedure of the EARLINET-ASOS algorithm inter-comparison exercise which is based on the analysis of synthetic signals. Mean deviations, mean relative deviations, and normalized root-mean-square deviations were calculated for all possible products and three height layers. In all cases, the deviations were clearly below the maximum allowed values according to the EARLINET quality requirements. The primary goal of ELPP is to enable the application of quality-assured procedures in the lidar data analysis starting from the raw lidar data. This provides the added value of full traceability of each delivered lidar product. Several tests have been performed to check the proper functioning of ELPP. The whole SCC has been tested with the same synthetic data sets, which were used for the EARLINET algorithm inter-comparison exercise. ELPP has been successfully employed for the automatic near-real-time pre-processing of the raw lidar data measured during several EARLINET inter-comparison campaigns as well as during intense field campaigns.
  • Item
    Dry versus wet marine particle optical properties: RH dependence of depolarization ratio, backscatter, and extinction from multiwavelength lidar measurements during SALTRACE
    (München : European Geopyhsical Union, 2017) Haarig, Moritz; Ansmann, Albert; Gasteiger, Josef; Kandler, Konrad; Althausen, Dietrich; Baars, Holger; Radenz, Martin; Farrell, David A.
    Triple-wavelength lidar observations of the depolarization ratio and the backscatter coefficient of marine aerosol as a function of relative humidity (RH) are presented with a 5min time resolution. The measurements were performed at Barbados (13°N, 59°W) during the Saharan Aerosol Long-range Transport and Aerosol-Cloud interaction Experiment (SALTRACE) winter campaign in February 2014. The phase transition from spherical sea salt particles to cubic-like sea salt crystals was observed with a polarization lidar. The radiosonde and water-vapor Raman lidar observations show a drop in RH below 50% in the marine aerosol layer simultaneously with a strong increase in particle linear depolarization ratio, which reaches values up to 0.12±0.08 (at 355nm), 0.15±0.03 (at 532nm), and 0.10±0.01 (at 1064nm). The lidar ratio (extinction-to-backscatter ratio) increased from 19 and 23sr for spherical sea salt particles to 27 and 25sr (at 355 and 532nm, respectively) for cubic-like particle ensembles. Furthermore the scattering enhancement due to hygroscopic growth of the marine aerosol particles under atmospheric conditions was measured. Extinction enhancement factors from 40 to 80% RH of 1.94±0.94 at 355nm, 3.70±1.14 at 532nm, and 5.37±1.66 at 1064nm were found. The enhanced depolarization ratios and lidar ratios were compared to modeling studies of cubic sea salt particles.
  • Item
    CALIPSO climatological products: Evaluation and suggestions from EARLINET
    (München : European Geopyhsical Union, 2016) Papagiannopoulos, Nikolaos; Mona, Lucia; Alados-Arboledas, Lucas; Amiridis, Vassilis; Baars, Holger; Binietoglou, Ioannis; Bortoli, Daniele; D'Amico, Giuseppe; Giunta, Aldo; Guerrero-Rascado, Juan Luis; Schwarz, Anja; Pereira, Sergio; Spinelli, Nicola; Wandinger, Ulla; Wang, Xuan; Pappalardo, Gelsomina
    The CALIPSO Level 3 (CL3) product is the most recent data set produced by the observations of the Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument onboard the Cloud–Aerosol Lidar and Pathfinder Satellite Observations (CALIPSO) space platform. The European Aerosol Research Lidar Network (EARLINET), based mainly on multi-wavelength Raman lidar systems, is the most appropriate ground-based reference for CALIPSO calibration/validation studies on a continental scale. In this work, CALIPSO data are compared against EARLINET monthly averaged profiles obtained by measurements performed during CALIPSO overpasses. In order to mitigate uncertainties due to spatial and temporal differences, we reproduce a modified version of CL3 data starting from CALIPSO Level 2 (CL2) data. The spatial resolution is finer and nearly 2°  ×  2° (latitude  ×  longitude) and only simultaneous measurements are used for ease of comparison. The CALIPSO monthly mean profiles following this approach are called CALIPSO Level 3*, CL3*. We find good agreement on the aerosol extinction coefficient, yet in most of the cases a small CALIPSO underestimation is observed with an average bias of 0.02 km−1 up to 4 km and 0.003 km−1 higher above. In contrast to CL3 standard product, the CL3* data set offers the possibility to assess the CALIPSO performance also in terms of the particle backscatter coefficient keeping the same quality assurance criteria applied to extinction profiles. The mean relative difference in the comparison improved from 25 % for extinction to 18 % for backscatter, showing better performances of CALIPSO backscatter retrievals. Additionally, the aerosol typing comparison yielded a robust identification of dust and polluted dust. Moreover, the CALIPSO aerosol-type-dependent lidar ratio selection is assessed by means of EARLINET observations, so as to investigate the performance of the extinction retrievals. The aerosol types of dust, polluted dust, and clean continental showed noticeable discrepancy. Finally, the potential improvements of the lidar ratio assignment have been examined by adjusting it according to EARLINET-derived values.
  • Item
    The automated multiwavelength Raman polarization and water-vapor lidar PollyXT: The neXT generation
    (München : European Geopyhsical Union, 2016) Engelmann, Ronny; Kanitz, Thomas; Baars, Holger; Heese, Birgit; Althausen, Dietrich; Skupin, Annett; Wandinger, Ulla; Komppula, Mika; Stachlewska, Iwona S.; Amiridis, Vassilis; Marinou, Eleni; Mattis, Ina; Linné, Holger; Ansmann, Albert
    The atmospheric science community demands autonomous and quality-assured vertically resolved measurements of aerosol and cloud properties. For this purpose, a portable lidar called Polly was developed at TROPOS in 2003. The lidar system was continuously improved with gained experience from the EARLINET community, involvement in worldwide field campaigns, and international institute collaborations within the last 10 years. Here we present recent changes of the setup of the portable multiwavelength Raman and polarization lidar PollyXT and discuss the improved capabilities of the system by means of a case study. The latest system developments include an additional near-range receiver unit for Raman measurements of the backscatter and extinction coefficient down to 120 m above ground, a water-vapor channel, and channels for simultaneous measurements of the particle linear depolarization ratio at 355 and 532 nm. Quality improvements were achieved by systematically following the EARLINET guidelines and the international PollyNET quality assurance developments. A modified ship radar ensures measurements in agreement with air-traffic safety regulations and allows for 24∕7 monitoring of the atmospheric state with PollyXT.
  • Item
    Long-term profiling of mineral dust and pollution aerosol with multiwavelength polarization Raman lidar at the Central Asian site of Dushanbe, Tajikistan: Case studies
    (München : European Geopyhsical Union, 2017) Hofer, Julian; Althausen, Dietrich; Abdullaev, Sabur F.; Makhmudov, Abduvosit N.; Nazarov, Bakhron I.; Schettler, Georg; Engelmann, Ronny; Baars, Holger; Fomba, K.Wadinga; Müller, Konrad; Heinold, Bernd; Kandler, Konrad; Ansmann, Albert
    For the first time, continuous vertically resolved aerosol measurements were performed by lidar in Tajikistan, Central Asia. Observations with the multiwavelength polarization Raman lidar PollyXT were conducted during CADEX (Central Asian Dust EXperiment) in Dushanbe, Tajikistan, from March 2015 to August 2016. Co-located with the lidar, a sun photometer was also operated. The goal of CADEX is to provide an unprecedented data set on vertically resolved aerosol optical properties in Central Asia, an area highly affected by climate change but largely missing vertically resolved aerosol measurements. During the 18-month measurement campaign, mineral dust was detected frequently from ground to the cirrus level height. In this study, an overview of the measurement period is given and four typical but different example measurement cases are discussed in detail. Three of them are dust cases and one is a contrasting pollution aerosol case. Vertical profiles of the measured optical properties and the calculated dust and non-dust mass concentrations are presented. Dust source regions were identified by means of backward trajectory analyses. A lofted layer of Middle Eastern dust with an aerosol optical thickness (AOT) of 0.4 and an extinction-related Ångström exponent of 0.41 was measured. In comparison, two near-ground dust cases have Central Asian sources. One is an extreme dust event with an AOT of 1.5 and Ångström exponent of 0.12 and the other one is a most extreme dust event with an AOT of above 4 (measured by sun photometer) and an Ångström exponent of −0.08. The observed lidar ratios (and particle linear depolarization ratios) in the presented dust cases range from 40.3 to 46.9sr (and 0.18–0.29) at 355nm and from 35.7 to 42.9sr (0.31–0.35) at 532nm wavelength. The particle linear depolarization ratios indicate almost unpolluted dust in the case of a lofted dust layer and pure dust in the near-ground dust cases. The lidar ratio values are lower than typical lidar ratio values for Saharan dust (50–60sr) and comparable to Middle Eastern or west-Asian dust lidar ratios (35–45sr). In contrast, the presented case of pollution aerosol of local origin has an Ångström exponent of 2.07 and a lidar ratio (particle linear depolarization ratio) of 55.8sr (0.03) at 355nm and 32.8sr (0.08) at 532nm wavelength.
  • Item
    An overview of the first decade of PollyNET: An emerging network of automated Raman-polarization lidars for continuous aerosol profiling
    (München : European Geopyhsical Union, 2016) Baars, Holger; Kanitz, Thomas; Engelmann, Ronny; Althausen, Dietrich; Heese, Birgit; Komppula, Mika; Preißler, Jana; Tesche, Matthias; Ansmann, Albert; Wandinger, Ulla; Lim, Jae-Hyun; Ahn, Joon Young; Stachlewska, Iwona S.; Amiridis, Vassilis; Marinou, Eleni; Seifert, Patric; Hofer, Julian; Skupin, Annett; Schneider, Florian; Bohlmann, Stephanie; Foth, Andreas; Bley, Sebastian; Pfüller, Anne; Giannakaki, Eleni; Lihavainen, Heikki; Viisanen, Yrjö; Hooda, Rakesh Kumar; Pereira, Sérgio Nepomuceno; Bortol, Daniele; Wagner, Frank; Mattis, Ina; Janicka, Lucja; Markowicz, Krzysztof M.; Achtert, Peggy; Artaxo, Paulo; Pauliquevis, Theotonio; Souza, Rodrigo A.F.; Sharma, Ved Prakesh; van Zyl, Pieter Gideon; Beukes, Johan Paul; Sun, Junying; Rohwer, Erich G.; Deng, Ruru; Mamouri, Rodanthi-Elisavet; Zamorano, Felix
    A global vertically resolved aerosol data set covering more than 10 years of observations at more than 20 measurement sites distributed from 63° N to 52° S and 72° W to 124° E has been achieved within the Raman and polarization lidar network PollyNET. This network consists of portable, remote-controlled multiwavelength-polarization-Raman lidars (Polly) for automated and continuous 24/7 observations of clouds and aerosols. PollyNET is an independent, voluntary, and scientific network. All Polly lidars feature a standardized instrument design with different capabilities ranging from single wavelength to multiwavelength systems, and now apply unified calibration, quality control, and data analysis. The observations are processed in near-real time without manual intervention, and are presented online at The paper gives an overview of the observations on four continents and two research vessels obtained with eight Polly systems. The specific aerosol types at these locations (mineral dust, smoke, dust-smoke and other dusty mixtures, urban haze, and volcanic ash) are identified by their Ångström exponent, lidar ratio, and depolarization ratio. The vertical aerosol distribution at the PollyNET locations is discussed on the basis of more than 55 000 automatically retrieved 30 min particle backscatter coefficient profiles at 532 nm as this operating wavelength is available for all Polly lidar systems. A seasonal analysis of measurements at selected sites revealed typical and extraordinary aerosol conditions as well as seasonal differences. These studies show the potential of PollyNET to support the establishment of a global aerosol climatology that covers the entire troposphere.