Search Results

Now showing 1 - 4 of 4
  • Item
    Subwavelength population density gratings in resonant medium created by few-cycle pulses
    (Bristol : IOP Publ., 2017) Arkhipov, R.M.; Arkhipov, M.V.; Pakhomov, A.V.; Babushkin, I.; Demircan, A.; Morgner, U.; Rosanov, N.N.
    We consider theoretically recently proposed a new possibility of creation, erasing and ultrafast control of population density grating. Such grating can be created in resonant medium when ultrashort pulses with duration smaller than relaxation times in the resonant medium (coherent light matter interactions) propagate without overlapping in this medium. Possible applications in the ultrafast optics such as optical switcher and laser beam deflector are discussed.
  • Item
    Passive and hybrid mode locking in multi-section terahertz quantum cascade lasers
    ([Bad Honnef] : Dt. Physikalische Ges., 2018-05-24) Tzenov, P.; Babushkin, I.; Arkhipov, R.; Arkhipov, M.; Rosanov, N.; Morgner, U.; Jirauschek, C.
    It is believed that passive mode locking is virtually impossible in quantum cascade lasers (QCLs) because of too fast carrier relaxation time. Here, we revisit this possibility and theoretically show that stable mode locking and pulse durations in the few cycle regime at terahertz (THz) frequencies are possible in suitably engineered bound-to-continuum QCLs. We achieve this by utilizing a multi-section cavity geometry with alternating gain and absorber sections. The critical ingredients are the very strong coupling of the absorber to both field and environment as well as a fast absorber carrier recovery dynamics. Under these conditions, even if the gain relaxation time is several times faster than the cavity round trip time, generation of few-cycle pulses is feasible. We investigate three different approaches for ultrashort pulse generation via THz quantum cascade lasers, namely passive, hybrid and colliding pulse mode locking.
  • Item
    Population density gratings induced by few-cycle optical pulses in a resonant medium
    (London : Nature Publishing Group, 2017) Arkhipov, R.M.; Pakhomov, A.V.; Arkhipov, M.V.; Babushkin, I.; Demircan, A.; Morgner, U.; Rosanov, N.N.
    Creation, erasing and ultrafast control of population density gratings using few-cycle optical pulses coherently interacting with resonant medium is discussed. In contrast to the commonly used schemes, here the pulses do not need to overlap in the medium, interaction between the pulses is mediated by excitation of polarization waves. We investigate the details of the dynamics arising in such ultrashort pulse scheme and develop an analytical theory demonstrating the importance of the phase memory effects in the dynamics.
  • Item
    Unusual terahertz waveforms from a resonant medium controlled by diffractive optical elements
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2019) Pakhomov, A.V.; Arkhipov, R.M.; Arkhipov, M.V.; Demircan, A.; Morgner, U.; Rosanov, N.N.; Babushkin, I.
    Up to now, full tunability of waveforms was possible only in electronics, up to radio-frequencies. Here we propose a new concept of producing few-cycle terahertz (THz) pulses with widely tunable waveforms. It is based on control of the phase delay between different parts of the THz wavefront using linear diffractive optical elements. Suitable subcycle THz wavefronts can be generated via coherent excitation of nonlinear low-frequency oscillators by few-cycle optical pulses. Using this approach it is possible to shape the electric field rather than the slow pulse envelope, obtaining, for instance, rectangular or triangular waveforms in the THz range. The method is upscalable to the optical range if the attosecond pump pulses are used.