Search Results

Now showing 1 - 2 of 2
  • Item
    The Effect of Chirp on Pulse Compression at a Group Velocity Horizon
    (New York, NY : IEEE, 2016) Babushkin, Ihar; Amiranashvili, Shalva; Bree, Carsten; Morgner, Uwe; Steinmeyer, Gunter; Demircan, Ayhan
    Group-velocity matched cross-phase modulation between a fundamental soliton and a dispersive wave packet has been previously suggested for optical switching applications similar to an optical transistor. Moreover, the nonlinear interaction in the resulting group-velocity horizon can be exploited for adiabatic compression of the soliton down into the few-cycle regime. Here, we study the delicate phase- and frequency-matching mechanism of soliton/dispersive wave interaction by controlling the input chirp of the dispersive wave. We demonstrate that such a modification of the dispersive wave can significantly alter the soliton dynamics. In particular, we show that it allows a decrease of the fiber length needed for the best compression and, to some extent, control of the trajectory of the soliton. The mechanism of such an influence is related to the modification of the phase-matching condition between the soliton and dispersive wave.
  • Item
    Transient pulse compression at a group velocity horizon
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Babushkin, Ihar; Amiranashvili, Shalva; Brée, Carsten; Morgner, Uwe; Steinmeyer, Günter; Demircan, Ayhan
    Group-velocity matched cross-phase modulation between a fundamental soliton and a dispersive wave-packet has been previously suggested for optical switching applications similar to an optical transistor. Moreover, the nonlinear interaction in the resulting groupvelocity horizon can be exploited for adiabatic compression of the soliton down into the fewcycle regime. Here we show that both mechanisms can be combined. In such a transient compressor, parameters of the dispersive wave may then serve to actively control the soliton compression and adjust the pulse duration in the presence of disturbances. While a certain amount of control is already enabled by the delay between soliton and dispersive wave, the means of controlling the compression process are substantially enhanced by additionally manipulating the chirp of the dispersive wave. Moreover, controlling the chirp of the dispersive wave also enables correction for limitations of the compression scheme due to a self-frequency shift of the soliton or for uncompensated dispersion in the scheme. This substantially widens the practicality of the compression scheme and other applications of the highly efficient nonlinear interaction at the group-velocity horizon.