Search Results

Now showing 1 - 3 of 3
  • Item
    Stability of quantum linear logic circuits against perturbations
    (Bristol : IOP Publ., 2020) Babushkin, Ihar; Morgner, Uwe; Demircan, Ayhan
    Here we study transformation of waveshapes of photons under the action of the linear logic circuits and other related architectures involving only linear optical networks and measurements. We show that the gates are working well not only in the case when all photons are separable and located in the same mode, but in some more general cases. For instance, the photonic waveshapes are allowed to be slightly different in different channels; in this case, Zeno effect prevents the photons from decoherence after the measurement, and the gate thus remains neutral to the small waveshape perturbations. © 2020 The Author(s). Published by IOP Publishing Ltd Printed in the UK
  • Item
    All-optical supercontinuum switching
    (London : Springer Nature, 2020) Melchert, Oliver; Brée, Carsten; Tajalli, Ayhan; Pape, Alexander; Arkhipov, Rostislav; Willms, Stephanie; Babushkin, Ihar; Skryabin, Dmitry; Steinmeyer, Günter; Morgner, Uwe; Demircan, Ayhan
    Efficient all-optical switching is a challenging task as photons are bosons and cannot immediately interact with each other. Consequently, one has to resort to nonlinear optical interactions, with the Kerr gate being the classical example. However, the latter requires strong pulses to switch weaker ones. Numerous approaches have been investigated to overcome the resulting lack of fan-out capability of all-optical switches, most of which relied on types of resonant enhancement of light-matter interaction. Here we experimentally demonstrate a novel approach that utilizes switching between different portions of soliton fission induced supercontinua, exploiting an optical event horizon. This concept enables a high switching efficiency and contrast in a dissipation free setting. Our approach enables fan-out, does not require critical biasing, and is at least partially cascadable. Controlling complex soliton dynamics paves the way towards building all-optical logic gates with advanced functionalities. © 2020, The Author(s).
  • Item
    Influence of tunnel ionization to third-harmonic generation of infrared femtosecond laser pulses in air
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2020) Tamulienė, Viktorija; Juškevičiūtė, Greta; Buožius, Danas; Vaičaitis, Virgilijus; Babushkin, Ihar; Morgner, Uwe
    Here we present an experimental as well as theoretical study of third-harmonic generation in tightly focused femtosecond filaments in air at the wavelength of 1.5μm. At low intensities, longitudinal phase matching is dominating in the formation of 3rd harmonics, whereas at higher intensities locked X-waves are formed. We provide the arguments that the X-wave formation is governed mainly by the tunnel-like ionization dynamics rather than by the multiphoton one. Despite of this fact, the impact of the ionization-induced nonlinearity is lower than the one from bound–bound transitions at all intensities. © 2020, The Author(s).