Search Results

Now showing 1 - 8 of 8
  • Item
    In Situ Fabrication of Freestanding Single-Atom-Thick 2D Metal/Metallene and 2D Metal/ Metallene Oxide Membranes: Recent Developments
    (Weinheim : Wiley-VCH, 2021) Ta, Huy Q.; Mendes, Rafael G.; Liu, Yu; Yang, Xiaoqin; Luo, Jingping; Bachmatiuk, Alicja; Gemming, Thomas; Zeng, Mengqi; Fu, Lei; Liu, Lijun; Rümmeli, Mark H.
    In recent years, two-dimensional (2D) materials have attracted a lot of research interest as they exhibit several fascinating properties. However, outside of 2D materials derived from van der Waals layered bulk materials only a few other such materials are realized, and it remains difficult to confirm their 2D freestanding structure. Despite that, many metals are predicted to exist as 2D systems. In this review, the authors summarize the recent progress made in the synthesis and characterization of these 2D metals, so called metallenes, and their oxide forms, metallene oxides as free standing 2D structures formed in situ through the use of transmission electron microscopy (TEM) and scanning TEM (STEM) to synthesize these materials. Two primary approaches for forming freestanding monoatomic metallic membranes are identified. In the first, graphene pores as a means to suspend the metallene or metallene oxide and in the second, electron-beam sputtering for the selective etching of metal alloys or thick complex initial materials is employed to obtain freestanding single-atom-thick 2D metal. The data show a growing number of 2D metals/metallenes and 2D metal/ metallene oxides having been confirmed and point to a bright future for further discoveries of these 2D materials.
  • Item
    Advances and Trends in Chemically Doped Graphene
    (Weinheim : Wiley-VCH, 2020) Ullah, Sami; Shi, Qitao; Zhou, Junhua; Yang, Xiaoqin; Ta, Huy Q.; Hasan, Maria; Ahmad, Nasir Mahmood; Fu, Lei; Bachmatiuk, Alicja; Rümmeli, Mark H.
    Chemically doped graphene materials are fascinating because these have different desirable attributes with possible synergy. The inert and gapless nature of graphene can be changed by adding a small number of heteroatoms to substitute carbon in the lattice. The doped material may display superior catalytic activities; durable, fast, and selective sensing; improved magnetic moments; photoresponses; and activity in chemical reactions. In the current review, recent advances are covered in chemically doped graphene. First, the different types of heteroatoms, their bonding configurations, and briefly their properties are discussed. This is followed by the description of various synthesis and analytical methods essential for assessing the characteristics of heterographene with specific focus on the selected graphene materials of different dopants (particularly, single dopants, including N, B, S, P, first three halogens, Ge, and Ga, and codopants, such as N/O), and more importantly, up-to-date applications enabled by the intentional doping. Finally, outlook and perspectives section review the existing challenges, future opportunities, and possible ways to improve the graphitic materials. The goal is to update and inspire the readers to establish novel doped graphene with valuable properties and for current and futuristic applications. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Graphene transfer methods: A review
    (New York, NY [u.a.] : Springer, 2021) Ullah, Sami; Yang, Xiaoqin; Ta, Huy Q.; Hasan, Maria; Bachmatiuk, Alicja; Tokarska, Klaudia; Trzebicka, Barbara; Fu, Lei; Rummeli, Mark H.
    Graphene is a material with unique properties that can be exploited in electronics, catalysis, energy, and bio-related fields. Although, for maximal utilization of this material, high-quality graphene is required at both the growth process and after transfer of the graphene film to the application-compatible substrate. Chemical vapor deposition (CVD) is an important method for growing high-quality graphene on non-technological substrates (as, metal substrates, e.g., copper foil). Thus, there are also considerable efforts toward the efficient and non-damaging transfer of quality of graphene on to technologically relevant materials and systems. In this review article, a range of graphene current transfer techniques are reviewed from the standpoint of their impact on contamination control and structural integrity preservation of the as-produced graphene. In addition, their scalability, cost- and time-effectiveness are discussed. We summarize with a perspective on the transfer challenges, alternative options and future developments toward graphene technology.
  • Item
    In Situ Room Temperature Electron-Beam Driven Graphene Growth from Hydrocarbon Contamination in a Transmission Electron Microscope
    (Basel : MDPI, 2018-5-26) Rummeli, Mark H.; Pan, Yumo; Zhao, Liang; Gao, Jing; Ta, Huy Q.; Martinez, Ignacio G.; Mendes, Rafael G.; Gemming, Thomas; Fu, Lei; Bachmatiuk, Alicja; Liu, Zhongfan
    The excitement of graphene (as well as 2D materials in general) has generated numerous procedures for the fabrication of graphene. Here we present a mini-review on a rather less known, but attractive, in situ means to fabricate graphene inside a transmission electron microscope (TEM). This is achieved in a conventional TEM (viz. no sophisticated specimen holders or microscopes are required) and takes advantage of inherent hydrocarbon contamination as a carbon source. Both catalyst free and single atom catalyst approaches are reviewed. An advantage of this technique is that not only can the growth process be imaged in situ, but this can also be achieved with atomic resolution. Moreover, in the future, one can anticipate such approaches enabling the growth of nano-materials with atomic precision.
  • Item
    Crystal structure, synthesis and characterization of different chromium-based two-dimensional compounds
    (Riyadh : Saudi Chemical Soc., 2023) Hasan, Maria; Ta, Huy Q.; Ullah, Sami; Yang, Xiaoqin; Luo, Jingping; Bachmatiuk, Alicja; Gemming, Thomas; Trzebicka, Barbara; Mahmood, Azhar; Zeng, Mengqi; Fu, Lei; Liu, Lijun; Rümmeli, Mark H.
    The field of two dimensional (2D) materials experienced a surge of discoveries after the isolation of graphene. Among these, the transition metal compounds of Molybdenum and tungsten have been the most extensively studied materials after graphene. More recently, their group member chromium has only recently come to the limelight after the discovery of its exciting magnetic properties. As such the body of work surrounding 2D chromium-based materials is growing. Here, we present an up-to-date summary of the chromium 2D materials showing the latest advances in their experimental synthesis, characterization and the applications of 2D Chromium-based compounds. Finally, we conclude with a perspective on the future of 2D chromium-based materials. We believe that this study will be helpful to understand the field of chromium-based 2D compounds.
  • Item
    Single-atom catalytic growth of crystals using graphene as a case study
    (London : Nature Publishing Group, 2021) Yang, Xiaoqin; Liu, Yu; Ta, Huy Q.; Rezvani, Ehsan; Zhang, Yue; Zeng, Mengqi; Fu, Lei; Bachmatiuk, Alicja; Luo, Jinping; Liu, Lijun; Rümmeli, Mark H.
    Anchored Single-atom catalysts have emerged as a cutting-edge research field holding tremendous appeal for applications in the fields of chemicals, energy and the environment. However, single-atom-catalysts for crystal growth is a nascent field. Of the few studies available, all of them are based on state-of-the-art in situ microscopy investigations and computational studies, and they all look at the growth of monolayer graphene from a single-atom catalyst. Despite the limited number of studies, they do, collectively, represent a new sub-field of single-atom catalysis, namely single-atom catalytic growth of crystalline solids. In this review, we examine them on substrate-supported and as freestanding graphene fabrication, as well as rolled-up graphene, viz., single-walled carbon nanotubes (SWCNT), grown from a single atom. We also briefly discuss the catalytic etching of graphene and SWCNT’s and conclude by outlining the future directions we envision this nascent field to take.
  • Item
    In Situ N-Doped Graphene and Mo Nanoribbon Formation from Mo2Ti2C3 MXene Monolayers
    (Weinheim : Wiley-VCH, 2020) Mendes, Rafael Gregorio; Ta, Huy Quang; Yang, Xiaoqin; Li, Wei; Bachmatiuk, Alicja; Choi, Jin-Ho; Gemming, Thomas; Anasori, Babak; Lijun, Liu; Fu, Lei; Liu, Zhongfan; Rümmeli, Mark Hermann
    Since the advent of monolayered 2D transition metal carbide and nitrides (MXenes) in 2011, the number of different monolayer systems and the study thereof have been on the rise. Mo2Ti2C3 is one of the least studied MXenes and new insights to this material are of value to the field. Here, the stability of Mo2Ti2C3 under electron irradiation is investigated. A transmission electron microscope (TEM) is used to study the structural and elemental changes in situ. It is found that Mo2Ti2C3 is reasonably stable for the first 2 min of irradiation. However, structural changes occur thereafter, which trigger increasingly rapid and significant rearrangement. This results in the formation of pores and two new nanomaterials, namely, N-doped graphene membranes and Mo nanoribbons. The study provides insight into the stability of Mo2Ti2C3 monolayers against electron irradiation, which will allow for reliable future study of the material using TEM. Furthermore, these findings will facilitate further research in the rapidly growing field of electron beam driven chemistry and engineering of nanomaterials. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    CVD growth of large area smooth-edged graphene nanomesh by nanosphere lithography
    (London : Nature Publishing Group, 2013) Wang, Min; Fu, Lei; Gan, Lin; Zhang, Chaohua; Rümmeli, Mark; Bachmatiuk, Alicja; Fang, Ying; Liu, Zhongfan
    Current etching routes to process large graphene sheets into nanoscale graphene so as to open up a bandgap tend to produce structures with rough and disordered edges. This leads to detrimental electron scattering and reduces carrier mobility. In this work, we present a novel yet simple direct-growth strategy to yield graphene nanomesh (GNM) on a patterned Cu foil via nanosphere lithography. Raman spectroscopy and TEM characterizations show that the as-grown GNM has significantly smoother edges than post-growth etched GNM. More importantly, the transistors based on as-grown GNM with neck widths of 65-75 nm have a near 3-fold higher mobility than those derived from etched GNM with the similar neck widths.