Search Results

Now showing 1 - 3 of 3
  • Item
    On the Catalytic Activity of Sn Monomers and Dimers at Graphene Edges and the Synchronized Edge Dependence of Diffusing Atoms in Sn Dimers
    (Weinheim : Wiley-VCH, 2021) Yang, Xiaoqin; Ta, Huy Q.; Hu, Huimin; Liu, Shuyuan; Liu, Yu; Bachmatiuk, Alicja; Luo, Jinping; Liu, Lijun; Choi, Jin-Ho; Rummeli, Mark H.
    In this study, in situ transmission electron microscopy is performed to study the interaction between single (monomer) and paired (dimer) Sn atoms at graphene edges. The results reveal that a single Sn atom can catalyze both the growth and etching of graphene by the addition and removal of C atoms respectively. Additionally, the frequencies of the energetically favorable configurations of an Sn atom at a graphene edge, calculated using density functional theory calculations, are compared with experimental observations and are found to be in good agreement. The remarkable dynamic processes of binary atoms (dimers) are also investigated and is the first such study to the best of the knowledge. Dimer diffusion along the graphene edges depends on the graphene edge termination. Atom pairs (dimers) involving an armchair configuration tend to diffuse with a synchronized shuffling (step-wise shift) action, while dimer diffusion at zigzag edge terminations show a strong propensity to collapse the dimer with each atom diffusing in opposite directions (monomer formation). Moreover, the data reveals the role of C feedstock availability on the choice a single Sn atom makes in terms of graphene growth or etching. This study advances the understanding single atom catalytic activity at graphene edges. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH
  • Item
    Dual‐Salt Electrolyte Additives Enabled Stable Lithium Metal Anode/Lithium–Manganese‐Rich Cathode Batteries
    (Weinheim : Wiley-VCH, 2021) Zhou, Junhua; Lian, Xueyu; Shi, Qitao; Liu, Yu; Yang, Xiaoqin; Bachmatiuk, Alicja; Liu, Lijun; Sun, Jingyu; Yang, Ruizhi; Choi, Jin-Ho; Rummeli, Mark H.
    Although lithium (Li) metal anode/lithium–manganese-rich (LMR) cathode batteries have an ultrahigh energy density, the highly active Li metal and structural deterioration of LMR can make the usage of these batteries difficult. Herein, a multifunctional electrolyte containing LiBF4 and LiFSI dual-salt additives is designed, which enables the superior cyclability of Li/LMR cells with capacity retentions of ≈83.4%, 80.4%, and 76.6% after 400 cycles at 0.5, 1, and 2 C, respectively. The dual-salt electrolyte can form a thin, uniform, and inorganic species-rich solid electrolyte interphase (SEI) and cathode electrolyte interphase (CEI). In addition, it alleviates the bulk Li corrosion and enhances the structural sustainability of LMR cathode. Moreover, the electrolyte design strategy provides insights to develop other high-voltage lithium metal batteries (HVLMBs) to enhance the cycle stability.
  • Item
    In Situ Observations of Freestanding Single-Atom-Thick Gold Nanoribbons Suspended in Graphene
    (Weinheim : Wiley-VCH, 2020) Zhao, Liang; Ta, Huy Q.; Mendes, Rafael G.; Bachmatiuk, Alicja; Rummeli, Mark H.
    Bulk gold's attributes of relative chemical inertness, rarity, relatively low melting point and its beautiful sheen make it a prized material for humans. Recordings suggest it was the first metal employed by humans dating as far back to the late Paleolithic period ≈40 000 BC. However, at the nanoscale gold is expected to present new and exciting properties, not least in catalysis. Moreover, recent studies suggest a new family of single-atom-thick two-dimensional (2D) metals exist. This work shows single-atom-thick freestanding gold membranes and nanoribbons can form as suspended structures in graphene pores. Electron irradiation is shown to lead to changes to the graphene pores which lead to dynamic changes of the gold membranes which transition to a nanoribbon. The freestanding single-atom-thick 2D gold structures are relatively stable to electron irradiation for extended periods. The work should advance the development of 2D gold monolayers significantly. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim