Search Results

Now showing 1 - 4 of 4
  • Item
    Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density
    (London : Nature Publishing Group, 2015) Son, In Hyuk; Park, Jong Hwan; Kwon, Soonchul; Park, Seongyong; Rümmeli, Mark H.; Bachmatiuk, Alicja; Song, Hyun Jae; Ku, Junhwan; Choi, Jang Wook; Choi, Jae-man; Doo, Seok-Gwang; Chang, Hyuk
    Silicon is receiving discernable attention as an active material for next generation lithium-ion battery anodes because of its unparalleled gravimetric capacity. However, the large volume change of silicon over charge–discharge cycles weakens its competitiveness in the volumetric energy density and cycle life. Here we report direct graphene growth over silicon nanoparticles without silicon carbide formation. The graphene layers anchored onto the silicon surface accommodate the volume expansion of silicon via a sliding process between adjacent graphene layers. When paired with a commercial lithium cobalt oxide cathode, the silicon carbide-free graphene coating allows the full cell to reach volumetric energy densities of 972 and 700 Wh l−1 at first and 200th cycle, respectively, 1.8 and 1.5 times higher than those of current commercial lithium-ion batteries. This observation suggests that two-dimensional layered structure of graphene and its silicon carbide-free integration with silicon can serve as a prototype in advancing silicon anodes to commercially viable technology.
  • Item
    CVD growth of large area smooth-edged graphene nanomesh by nanosphere lithography
    (London : Nature Publishing Group, 2013) Wang, Min; Fu, Lei; Gan, Lin; Zhang, Chaohua; Rümmeli, Mark; Bachmatiuk, Alicja; Fang, Ying; Liu, Zhongfan
    Current etching routes to process large graphene sheets into nanoscale graphene so as to open up a bandgap tend to produce structures with rough and disordered edges. This leads to detrimental electron scattering and reduces carrier mobility. In this work, we present a novel yet simple direct-growth strategy to yield graphene nanomesh (GNM) on a patterned Cu foil via nanosphere lithography. Raman spectroscopy and TEM characterizations show that the as-grown GNM has significantly smoother edges than post-growth etched GNM. More importantly, the transistors based on as-grown GNM with neck widths of 65-75 nm have a near 3-fold higher mobility than those derived from etched GNM with the similar neck widths.
  • Item
    Microscopic insight into the bilateral formation of carbon spirals from a symmetric iron core
    (London : Nature Publishing Group, 2013) Shiozawa, Hidetsugu; Bachmatiuk, Alicja; Stangl, Andreas; Cox, David C.; Silva, S. Ravi P.; Rümmeli, Mark; Pichler, Thomas
    Mirrored carbon-spirals have been produced from pressured ferrocene via the bilateral extrusion of the spiral pairs from an iron core. A parametric plot of the surface geometry displays the fractal growth of the conical helix made with the logarithmic spiral. Electron microscopy studies show the core is a crystalline cementite which grows and transforms its shape from spherical to biconical as it extrudes two spiralling carbon arms. In a cross section along the arms we observe graphitic flakes arranged in a herringbone structure, normal to which defects propagate. Local-wave-pattern analysis reveals nanoscale defect patterns of two-fold symmetry around the core. The data suggest that the bilateral growth originates from a globular cementite crystal with molten surfaces and the nano-defects shape emerging hexagonal carbon into a fractal structure. Understanding and knowledge obtained provide a basis for the controlled production of advanced carbon materials with designed geometries.
  • Item
    In-situ quasi-instantaneous e-beam driven catalyst-free formation of crystalline aluminum borate nanowires
    (London : Nature Publishing Group, 2016) Gonzalez-Martinez, Ignacio G.; Gemming, Thomas; Mendes, Rafael; Bachmatiuk, Alicja; Bezugly, Viktor; Kunstmann, Jens; Eckert, Jürgen; Cuniberti, Gianaurelio; Rümmeli, Mark H.
    The catalyst-assisted nucleation and growth mechanisms for many kinds of nanowires and nanotubes are pretty well understood. At times, though, 1D nanostructures form without a catalyst and the argued growth modes have inconsistencies. One such example is the catalyst-free growth of aluminium borate nanowires. Here we develop an in-situ catalyst-free room temperature growth route for aluminium nanowires using the electron beam in a transmission electron microscope. We provide strong experimental evidence that supports a formation process that can be viewed as a phase transition in which the generation of free-volume induced by the electron beam irradiation enhances the atomic mobility within the precursor material. The enhanced atomic mobility and specific features of the crystal structure of Al5BO9 drive the atomic rearrangement that results in the large scale formation of highly crystalline aluminium borate nanowires. The whole formation process can be completed within fractions of a second. Our developed growth mechanism might also be extended to describe the catalyst-free formation of other nanowires.