Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

A size dependent evaluation of the cytotoxicity and uptake of nanographene oxide

2015, Mendes, Rafael Gregorio, Koch, Britta, Bachmatiuk, Alicja, Ma, Xing, Sanchez, Samuel, Damm, Christine, Schmidt, Oliver G., Gemming, Thomas, Eckert, Jürgen, Rümmeli, Mark H.

Graphene oxide (GO) has attracted great interest due to its extraordinary potential for biomedical application. Although it is clear that the naturally occurring morphology of biological structures is crucial to their precise interactions and correct functioning, the geometrical aspects of nanoparticles are often ignored in the design of nanoparticles for biological applications. A few in vitro and in vivo studies have evaluated the cytotoxicity and biodistribution of GO, however very little is known about the influence of flake size and cytotoxicity. Herein, we aim at presenting an initial cytotoxicity evaluation of different nano-sized GO flakes for two different cell lines (HeLa (Kyoto) and macrophage (J7742)) when they are exposed to samples containing different sized nanographene oxide (NGO) flakes (mean diameter of 89 and 277 nm). The obtained data suggests that the larger NGO flakes reduce cell viability as compared to smaller flakes. In addition, the viability reduction correlates with the time and the concentration of the NGO nanoparticles to which the cells are exposed. Uptake studies were also conducted and the data suggests that both cell lines internalize the GO nanoparticles during the incubation periods studied.

Loading...
Thumbnail Image
Item

In Situ N-Doped Graphene and Mo Nanoribbon Formation from Mo2Ti2C3 MXene Monolayers

2020, Mendes, Rafael Gregorio, Ta, Huy Quang, Yang, Xiaoqin, Li, Wei, Bachmatiuk, Alicja, Choi, Jin-Ho, Gemming, Thomas, Anasori, Babak, Lijun, Liu, Fu, Lei, Liu, Zhongfan, Rümmeli, Mark Hermann

Since the advent of monolayered 2D transition metal carbide and nitrides (MXenes) in 2011, the number of different monolayer systems and the study thereof have been on the rise. Mo2Ti2C3 is one of the least studied MXenes and new insights to this material are of value to the field. Here, the stability of Mo2Ti2C3 under electron irradiation is investigated. A transmission electron microscope (TEM) is used to study the structural and elemental changes in situ. It is found that Mo2Ti2C3 is reasonably stable for the first 2 min of irradiation. However, structural changes occur thereafter, which trigger increasingly rapid and significant rearrangement. This results in the formation of pores and two new nanomaterials, namely, N-doped graphene membranes and Mo nanoribbons. The study provides insight into the stability of Mo2Ti2C3 monolayers against electron irradiation, which will allow for reliable future study of the material using TEM. Furthermore, these findings will facilitate further research in the rapidly growing field of electron beam driven chemistry and engineering of nanomaterials. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim