Search Results

Now showing 1 - 5 of 5
  • Item
    On the Catalytic Activity of Sn Monomers and Dimers at Graphene Edges and the Synchronized Edge Dependence of Diffusing Atoms in Sn Dimers
    (Weinheim : Wiley-VCH, 2021) Yang, Xiaoqin; Ta, Huy Q.; Hu, Huimin; Liu, Shuyuan; Liu, Yu; Bachmatiuk, Alicja; Luo, Jinping; Liu, Lijun; Choi, Jin-Ho; Rummeli, Mark H.
    In this study, in situ transmission electron microscopy is performed to study the interaction between single (monomer) and paired (dimer) Sn atoms at graphene edges. The results reveal that a single Sn atom can catalyze both the growth and etching of graphene by the addition and removal of C atoms respectively. Additionally, the frequencies of the energetically favorable configurations of an Sn atom at a graphene edge, calculated using density functional theory calculations, are compared with experimental observations and are found to be in good agreement. The remarkable dynamic processes of binary atoms (dimers) are also investigated and is the first such study to the best of the knowledge. Dimer diffusion along the graphene edges depends on the graphene edge termination. Atom pairs (dimers) involving an armchair configuration tend to diffuse with a synchronized shuffling (step-wise shift) action, while dimer diffusion at zigzag edge terminations show a strong propensity to collapse the dimer with each atom diffusing in opposite directions (monomer formation). Moreover, the data reveals the role of C feedstock availability on the choice a single Sn atom makes in terms of graphene growth or etching. This study advances the understanding single atom catalytic activity at graphene edges. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH
  • Item
    Phosphorus‐Based Composites as Anode Materials for Advanced Alkali Metal Ion Batteries
    (Hoboke, NJ : Wiley, 2020) Zhou, Junhua; Shi, Qitao; Ullah, Sami; Yang, Xiaoqin; Bachmatiuk, Alicja; Yang, Ruizhi; Rummeli, Mark H.
    Alkaline metal ion batteries, such as lithium‐ion batteries have been increasingly adopted in consumer electronics, electric vehicles, and large power grids because of their high energy density, power density and working voltage, and long cycle life. Phosphorus‐based materials including phosphorus anodes and metal phosphides with high theoretical capacity, natural abundance, and environmental friendliness show great potential as negative electrodes for alkaline metal ion batteries. In this review, based on the understanding of the storage mechanism of alkali metal ions, the scientific challenges are discussed, the preparation methods and solutions to address these challenges are summarized, the application prospects are demonstrated, and finally possible future research directions of phosphorus‐based materials are provided.
  • Item
    Dual‐Salt Electrolyte Additives Enabled Stable Lithium Metal Anode/Lithium–Manganese‐Rich Cathode Batteries
    (Weinheim : Wiley-VCH, 2021) Zhou, Junhua; Lian, Xueyu; Shi, Qitao; Liu, Yu; Yang, Xiaoqin; Bachmatiuk, Alicja; Liu, Lijun; Sun, Jingyu; Yang, Ruizhi; Choi, Jin-Ho; Rummeli, Mark H.
    Although lithium (Li) metal anode/lithium–manganese-rich (LMR) cathode batteries have an ultrahigh energy density, the highly active Li metal and structural deterioration of LMR can make the usage of these batteries difficult. Herein, a multifunctional electrolyte containing LiBF4 and LiFSI dual-salt additives is designed, which enables the superior cyclability of Li/LMR cells with capacity retentions of ≈83.4%, 80.4%, and 76.6% after 400 cycles at 0.5, 1, and 2 C, respectively. The dual-salt electrolyte can form a thin, uniform, and inorganic species-rich solid electrolyte interphase (SEI) and cathode electrolyte interphase (CEI). In addition, it alleviates the bulk Li corrosion and enhances the structural sustainability of LMR cathode. Moreover, the electrolyte design strategy provides insights to develop other high-voltage lithium metal batteries (HVLMBs) to enhance the cycle stability.
  • Item
    In Situ N-Doped Graphene and Mo Nanoribbon Formation from Mo2Ti2C3 MXene Monolayers
    (Weinheim : Wiley-VCH, 2020) Mendes, Rafael Gregorio; Ta, Huy Quang; Yang, Xiaoqin; Li, Wei; Bachmatiuk, Alicja; Choi, Jin-Ho; Gemming, Thomas; Anasori, Babak; Lijun, Liu; Fu, Lei; Liu, Zhongfan; Rümmeli, Mark Hermann
    Since the advent of monolayered 2D transition metal carbide and nitrides (MXenes) in 2011, the number of different monolayer systems and the study thereof have been on the rise. Mo2Ti2C3 is one of the least studied MXenes and new insights to this material are of value to the field. Here, the stability of Mo2Ti2C3 under electron irradiation is investigated. A transmission electron microscope (TEM) is used to study the structural and elemental changes in situ. It is found that Mo2Ti2C3 is reasonably stable for the first 2 min of irradiation. However, structural changes occur thereafter, which trigger increasingly rapid and significant rearrangement. This results in the formation of pores and two new nanomaterials, namely, N-doped graphene membranes and Mo nanoribbons. The study provides insight into the stability of Mo2Ti2C3 monolayers against electron irradiation, which will allow for reliable future study of the material using TEM. Furthermore, these findings will facilitate further research in the rapidly growing field of electron beam driven chemistry and engineering of nanomaterials. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Facile production of ultra-fine silicon nanoparticles
    (London : Royal Society Publishing, 2020) Tokarska, Klaudia; Shi, Qitao; Otulakowski, Lukasz; Wrobel, Pawel; Ta, Huy Quang; Kurtyka, Przemyslaw; Kordyka, Aleksandra; Siwy, Mariola; Vasylieva, Margaryta; Forys, Aleksander; Trzebick, Barbara; Bachmatiuk, Alicja; Rümmeli, Mark H.
    A facile procedure for the synthesis of ultra-fine silicon nanoparticles without the need for a Schlenk vacuum line is presented. The process consists of the production of a (HSiO1.5)n sol–gel precursor based on the polycondensation of low-cost trichlorosilane (HSiCl3), followed by its annealing and etching. The obtained materials were thoroughly characterized after each preparation step by electron microscopy, Fourier transform and Raman spectroscopy, X-ray dispersion spectroscopy, diffraction methods and photoluminescence spectroscopy. The data confirm the formation of ultra-fine silicon nanoparticles with controllable average diameters between 1 and 5 nm depending on the etching time.