Search Results

Now showing 1 - 3 of 3
  • Item
    Graphene transfer methods: A review
    (New York, NY [u.a.] : Springer, 2021) Ullah, Sami; Yang, Xiaoqin; Ta, Huy Q.; Hasan, Maria; Bachmatiuk, Alicja; Tokarska, Klaudia; Trzebicka, Barbara; Fu, Lei; Rummeli, Mark H.
    Graphene is a material with unique properties that can be exploited in electronics, catalysis, energy, and bio-related fields. Although, for maximal utilization of this material, high-quality graphene is required at both the growth process and after transfer of the graphene film to the application-compatible substrate. Chemical vapor deposition (CVD) is an important method for growing high-quality graphene on non-technological substrates (as, metal substrates, e.g., copper foil). Thus, there are also considerable efforts toward the efficient and non-damaging transfer of quality of graphene on to technologically relevant materials and systems. In this review article, a range of graphene current transfer techniques are reviewed from the standpoint of their impact on contamination control and structural integrity preservation of the as-produced graphene. In addition, their scalability, cost- and time-effectiveness are discussed. We summarize with a perspective on the transfer challenges, alternative options and future developments toward graphene technology.
  • Item
    Large-Area Single-Crystal Graphene via Self-Organization at the Macroscale
    (Weinheim : Wiley-VCH, 2020) Ta, Huy Quang; Bachmatiuk, Alicja; Mendes, Rafael Gregorio; Perello, David J.; Zhao, Liang; Trzebicka, Barbara; Gemming, Thomas; Rotkin, Slava V.; Rümmeli, Mark H.
    In 1665 Christiaan Huygens first noticed how two pendulums, regardless of their initial state, would synchronize. It is now known that the universe is full of complex self-organizing systems, from neural networks to correlated materials. Here, graphene flakes, nucleated over a polycrystalline graphene film, synchronize during growth so as to ultimately yield a common crystal orientation at the macroscale. Strain and diffusion gradients are argued as the probable causes for the long-range cross-talk between flakes and the formation of a single-grain graphene layer. The work demonstrates that graphene synthesis can be advanced to control the nucleated crystal shape, registry, and relative alignment between graphene crystals for large area, that is, a single-crystal bilayer, and (AB-stacked) few-layer graphene can been grown at the wafer scale. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Single-atom catalytic growth of crystals using graphene as a case study
    (London : Nature Publishing Group, 2021) Yang, Xiaoqin; Liu, Yu; Ta, Huy Q.; Rezvani, Ehsan; Zhang, Yue; Zeng, Mengqi; Fu, Lei; Bachmatiuk, Alicja; Luo, Jinping; Liu, Lijun; Rümmeli, Mark H.
    Anchored Single-atom catalysts have emerged as a cutting-edge research field holding tremendous appeal for applications in the fields of chemicals, energy and the environment. However, single-atom-catalysts for crystal growth is a nascent field. Of the few studies available, all of them are based on state-of-the-art in situ microscopy investigations and computational studies, and they all look at the growth of monolayer graphene from a single-atom catalyst. Despite the limited number of studies, they do, collectively, represent a new sub-field of single-atom catalysis, namely single-atom catalytic growth of crystalline solids. In this review, we examine them on substrate-supported and as freestanding graphene fabrication, as well as rolled-up graphene, viz., single-walled carbon nanotubes (SWCNT), grown from a single atom. We also briefly discuss the catalytic etching of graphene and SWCNT’s and conclude by outlining the future directions we envision this nascent field to take.