Search Results

Now showing 1 - 10 of 25
Loading...
Thumbnail Image
Item

In Situ Fabrication of Freestanding Single-Atom-Thick 2D Metal/Metallene and 2D Metal/ Metallene Oxide Membranes: Recent Developments

2021, Ta, Huy Q., Mendes, Rafael G., Liu, Yu, Yang, Xiaoqin, Luo, Jingping, Bachmatiuk, Alicja, Gemming, Thomas, Zeng, Mengqi, Fu, Lei, Liu, Lijun, Rümmeli, Mark H.

In recent years, two-dimensional (2D) materials have attracted a lot of research interest as they exhibit several fascinating properties. However, outside of 2D materials derived from van der Waals layered bulk materials only a few other such materials are realized, and it remains difficult to confirm their 2D freestanding structure. Despite that, many metals are predicted to exist as 2D systems. In this review, the authors summarize the recent progress made in the synthesis and characterization of these 2D metals, so called metallenes, and their oxide forms, metallene oxides as free standing 2D structures formed in situ through the use of transmission electron microscopy (TEM) and scanning TEM (STEM) to synthesize these materials. Two primary approaches for forming freestanding monoatomic metallic membranes are identified. In the first, graphene pores as a means to suspend the metallene or metallene oxide and in the second, electron-beam sputtering for the selective etching of metal alloys or thick complex initial materials is employed to obtain freestanding single-atom-thick 2D metal. The data show a growing number of 2D metals/metallenes and 2D metal/ metallene oxides having been confirmed and point to a bright future for further discoveries of these 2D materials.

Loading...
Thumbnail Image
Item

Graphene-Like ZnO: A Mini Review

2016, Ta, Huy Q., Zhao, Liang, Pohl, Darius, Pang, Jinbo, Trzebicka, Barbara, Rellinghaus, Bernd, Pribat, Didier, Gemming, Thomas, Liu, Zhongfan, Bachmatiuk, Alicja, Rümmeli, Mark H.

The isolation of a single layer of graphite, known today as graphene, not only demonstrated amazing new properties but also paved the way for a new class of materials often referred to as two-dimensional (2D) materials. Beyond graphene, other 2D materials include h-BN, transition metal dichalcogenides (TMDs), silicene, and germanene, to name a few. All tend to have exciting physical and chemical properties which appear due to dimensionality effects and modulation of their band structure. A more recent member of the 2D family is graphene-like zinc oxide (g-ZnO) which also holds great promise as a future functional material. This review examines current progress in the synthesis and characterization of g-ZnO. In addition, an overview of works dealing with the properties of g-ZnO both in its pristine form and modified forms (e.g., nano-ribbon, doped material, etc.) is presented. Finally, discussions/studies on the potential applications of g-ZnO are reviewed and discussed.

Loading...
Thumbnail Image
Item

Electron Beam-Induced Reduction of Cuprite

2022, Siudzinska, Anna, Gorantla, Sandeep M., Serafinczuk, Jaroslaw, Kudrawiec, Robert, Hommel, Detlef, Bachmatiuk, Alicja

Cu-based materials are used in various industries, such as electronics, power generation, and catalysis. In particular, monolayered cuprous oxide (Cu2O) has potential applications in solar cells owing to its favorable electronic and magnetic properties. Atomically thin Cu2O samples derived from bulk cuprite were characterized by high-resolution transmission electron microscopy (HRTEM). Two voltages, 80 kV and 300 kV, were explored for in situ observations of the samples. The optimum electron beam parameters (300 kV, low-current beam) were used to prevent beam damage. The growth of novel crystal structures, identified as Cu, was observed in the samples exposed to isopropanol (IPA) and high temperatures. It is proposed that the exposure of the copper (I) oxide samples to IPA and temperature causes material nucleation, whereas the consequent exposure via e-beams generated from the electron beam promotes the growth of the nanosized Cu crystals.

Loading...
Thumbnail Image
Item

In Situ Room Temperature Electron-Beam Driven Graphene Growth from Hydrocarbon Contamination in a Transmission Electron Microscope

2018-5-26, Rummeli, Mark H., Pan, Yumo, Zhao, Liang, Gao, Jing, Ta, Huy Q., Martinez, Ignacio G., Mendes, Rafael G., Gemming, Thomas, Fu, Lei, Bachmatiuk, Alicja, Liu, Zhongfan

The excitement of graphene (as well as 2D materials in general) has generated numerous procedures for the fabrication of graphene. Here we present a mini-review on a rather less known, but attractive, in situ means to fabricate graphene inside a transmission electron microscope (TEM). This is achieved in a conventional TEM (viz. no sophisticated specimen holders or microscopes are required) and takes advantage of inherent hydrocarbon contamination as a carbon source. Both catalyst free and single atom catalyst approaches are reviewed. An advantage of this technique is that not only can the growth process be imaged in situ, but this can also be achieved with atomic resolution. Moreover, in the future, one can anticipate such approaches enabling the growth of nano-materials with atomic precision.

Loading...
Thumbnail Image
Item

Advances and Trends in Chemically Doped Graphene

2020, Ullah, Sami, Shi, Qitao, Zhou, Junhua, Yang, Xiaoqin, Ta, Huy Q., Hasan, Maria, Ahmad, Nasir Mahmood, Fu, Lei, Bachmatiuk, Alicja, Rümmeli, Mark H.

Chemically doped graphene materials are fascinating because these have different desirable attributes with possible synergy. The inert and gapless nature of graphene can be changed by adding a small number of heteroatoms to substitute carbon in the lattice. The doped material may display superior catalytic activities; durable, fast, and selective sensing; improved magnetic moments; photoresponses; and activity in chemical reactions. In the current review, recent advances are covered in chemically doped graphene. First, the different types of heteroatoms, their bonding configurations, and briefly their properties are discussed. This is followed by the description of various synthesis and analytical methods essential for assessing the characteristics of heterographene with specific focus on the selected graphene materials of different dopants (particularly, single dopants, including N, B, S, P, first three halogens, Ge, and Ga, and codopants, such as N/O), and more importantly, up-to-date applications enabled by the intentional doping. Finally, outlook and perspectives section review the existing challenges, future opportunities, and possible ways to improve the graphitic materials. The goal is to update and inspire the readers to establish novel doped graphene with valuable properties and for current and futuristic applications. © 2020 The Authors. Published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

Hydrophilic non-precious metal nitrogen-doped carbon electrocatalysts for enhanced efficiency in oxygen reduction reaction

2015, Hao, Guang-Ping, Sahraie, Nastaran Ranjbar, Zhang, Qiang, Krause, Simon, Oschatz, Martin, Bachmatiuk, Alicja, Strasser, Peter, Kaskel, Stefan

Exploring the role of surface hydrophilicity of non-precious metal N-doped carbon electrocatalysts in electrocatalysis is challenging. Herein we discover an ultra-hydrophilic non-precious carbon electrocatalyst, showing enhanced catalysis efficiency on both gravimetric and areal basis for oxygen reduction reaction due to a high dispersion of active centres.

Loading...
Thumbnail Image
Item

Applications of Carbon Nanotubes in the Internet of Things Era

2021, Pang, Jinbo, Bachmatiuk, Alicja, Yang, Feng, Liu, Hong, Zhou, Weijia, Rümmeli, Mark H., Cuniberti, Gianaurelio

The post-Moore's era has boosted the progress in carbon nanotube-based transistors. Indeed, the 5G communication and cloud computing stimulate the research in applications of carbon nanotubes in electronic devices. In this perspective, we deliver the readers with the latest trends in carbon nanotube research, including high-frequency transistors, biomedical sensors and actuators, brain-machine interfaces, and flexible logic devices and energy storages. Future opportunities are given for calling on scientists and engineers into the emerging topics.

Loading...
Thumbnail Image
Item

On the Catalytic Activity of Sn Monomers and Dimers at Graphene Edges and the Synchronized Edge Dependence of Diffusing Atoms in Sn Dimers

2021, Yang, Xiaoqin, Ta, Huy Q., Hu, Huimin, Liu, Shuyuan, Liu, Yu, Bachmatiuk, Alicja, Luo, Jinping, Liu, Lijun, Choi, Jin-Ho, Rummeli, Mark H.

In this study, in situ transmission electron microscopy is performed to study the interaction between single (monomer) and paired (dimer) Sn atoms at graphene edges. The results reveal that a single Sn atom can catalyze both the growth and etching of graphene by the addition and removal of C atoms respectively. Additionally, the frequencies of the energetically favorable configurations of an Sn atom at a graphene edge, calculated using density functional theory calculations, are compared with experimental observations and are found to be in good agreement. The remarkable dynamic processes of binary atoms (dimers) are also investigated and is the first such study to the best of the knowledge. Dimer diffusion along the graphene edges depends on the graphene edge termination. Atom pairs (dimers) involving an armchair configuration tend to diffuse with a synchronized shuffling (step-wise shift) action, while dimer diffusion at zigzag edge terminations show a strong propensity to collapse the dimer with each atom diffusing in opposite directions (monomer formation). Moreover, the data reveals the role of C feedstock availability on the choice a single Sn atom makes in terms of graphene growth or etching. This study advances the understanding single atom catalytic activity at graphene edges. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

Graphene transfer methods: A review

2021, Ullah, Sami, Yang, Xiaoqin, Ta, Huy Q., Hasan, Maria, Bachmatiuk, Alicja, Tokarska, Klaudia, Trzebicka, Barbara, Fu, Lei, Rummeli, Mark H.

Graphene is a material with unique properties that can be exploited in electronics, catalysis, energy, and bio-related fields. Although, for maximal utilization of this material, high-quality graphene is required at both the growth process and after transfer of the graphene film to the application-compatible substrate. Chemical vapor deposition (CVD) is an important method for growing high-quality graphene on non-technological substrates (as, metal substrates, e.g., copper foil). Thus, there are also considerable efforts toward the efficient and non-damaging transfer of quality of graphene on to technologically relevant materials and systems. In this review article, a range of graphene current transfer techniques are reviewed from the standpoint of their impact on contamination control and structural integrity preservation of the as-produced graphene. In addition, their scalability, cost- and time-effectiveness are discussed. We summarize with a perspective on the transfer challenges, alternative options and future developments toward graphene technology.

Loading...
Thumbnail Image
Item

A size dependent evaluation of the cytotoxicity and uptake of nanographene oxide

2015, Mendes, Rafael Gregorio, Koch, Britta, Bachmatiuk, Alicja, Ma, Xing, Sanchez, Samuel, Damm, Christine, Schmidt, Oliver G., Gemming, Thomas, Eckert, Jürgen, Rümmeli, Mark H.

Graphene oxide (GO) has attracted great interest due to its extraordinary potential for biomedical application. Although it is clear that the naturally occurring morphology of biological structures is crucial to their precise interactions and correct functioning, the geometrical aspects of nanoparticles are often ignored in the design of nanoparticles for biological applications. A few in vitro and in vivo studies have evaluated the cytotoxicity and biodistribution of GO, however very little is known about the influence of flake size and cytotoxicity. Herein, we aim at presenting an initial cytotoxicity evaluation of different nano-sized GO flakes for two different cell lines (HeLa (Kyoto) and macrophage (J7742)) when they are exposed to samples containing different sized nanographene oxide (NGO) flakes (mean diameter of 89 and 277 nm). The obtained data suggests that the larger NGO flakes reduce cell viability as compared to smaller flakes. In addition, the viability reduction correlates with the time and the concentration of the NGO nanoparticles to which the cells are exposed. Uptake studies were also conducted and the data suggests that both cell lines internalize the GO nanoparticles during the incubation periods studied.