Search Results

Now showing 1 - 4 of 4
  • Item
    Comparative studies of low-intensity short-length arcs
    (Praha : Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Physics, 2019) Baeva, M.; Siewert, E.; Uhrlandt, D.
    We present results obtained by two non-equilibrium modelling approaches and experiments on low-intensity short-length arcs in argon at atmospheric pressure. The first one considers a quasi-neutral arc column combined with boundary conditions on the electrodes based on the energy balance in the space-charge sheaths. The second approach applies a unified description over the entire gap and solves the Poisson equation for the self-consistent electric field. The experiments provide the arc voltage.
  • Item
    Advanced Nonequilibrium Modelling of DC Tungsten-Inert Gas Arcs
    (Praha : Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Physics, 2017) Baeva, M.; Uhrlandt, D.
    The paper is concerned with the state-of-the-art nonequilibrium modelling of a DC tungsten-inert gas arc plasma. The advanced description involves the two-way interaction between the plasma and the electrodes. Results in atmospheric pressure argon demonstrating important features of the arc plasma are presented and discussed. First results in the presence of metal vapour released from the molten anode are presented. Outlook for further developments in nonequilibrium arc modelling are discussed.
  • Item
    A collisional-radiative model of iron vapour in a thermal arc plasma
    (Bristol : IOP Publ., 2017-05-15) Baeva, M.; Uhrlandt, D.; Murphy, A.B.
    A collisional-radiative model for the ground state and fifty effective excited levels of atomic iron, and one level for singly-ionized iron, is set up for technological plasmas. Attention is focused on the population of excited states of atomic iron as a result of excitation, de-excitation, ionization, recombination and spontaneous emission. Effective rate coefficients for ionization and recombination, required in non-equilibrium plasma transport models, are also obtained. The collisional-radiative model is applied to a thermal arc plasma. Input parameters for the collisional-radiative model are provided by a magnetohydrodynamic simulation of a gas-metal welding arc, in which local thermodynamic equilibrium is assumed and the treatment of the transport of metal vapour is based on combined diffusion coefficients. The results clearly identify the conditions in the arc, under which the atomic state distribution satisfies the Boltzmann distribution, with an excitation temperature equal to the plasma temperature. These conditions are met in the central part of the arc, even though a local temperature minimum occurs here. This provides assurance that diagnostic methods based on local thermodynamic equilibrium, in particular those of optical emission spectroscopy, are reliable here. In contrast, deviations from the equilibrium atomic-state distribution are obtained in the near-electrode and arc fringe regions. As a consequence, the temperatures determined from the ratio of line intensities and number densities obtained from the emission coefficient in these regions are questionable. In this situation, the collisional-radiative model can be used as a diagnostic tool to assist in the interpretation of spectroscopic measurements.
  • Item
    Cathode fall voltage of TIG arcs from a non-equilibrium arc model
    (Heidelberg : Springer, 2014) Uhrlandt, D.; Baeva, M.; Pipa, A.V.; Kozakov, R.; Gött, G.
    This work presents modelling results concerning a tungsten inert gas (TIG) welding arc. The model provides a consistent description of the free burning arc, the arc attachment and the electrodes. Thermal and chemical non-equilibrium is considered in the whole arc area, and a detailed model of the cathode space-charge sheath is included. The mechanisms in the cathode pre-sheath are treated in the framework of a non-equilibrium approach which is based on a two-fluid description of electrons and heavy particles and a simplified plasma chemistry of argon. A consistent determination of the electrode fall voltages and temperature distributions is achieved. The model is applied to arcs in pure argon at currents up to 250 A, whereby welding of a workpiece made of mild steel with a fixed burner is considered. Arc voltages in the range from 12 to 17 V are obtained at 50 at 250 A, respectively. The space-charge sheath voltage is found to be about 7 V and almost independent of the current. The corresponding temperatures of the cathode tip are in the range from 3,000 K to about 3,800 K. The results obtained are in a good agreement with measurements.