Search Results

Now showing 1 - 3 of 3
  • Item
    Comparative studies of low-intensity short-length arcs
    (Praha : Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Physics, 2019) Baeva, M.; Siewert, E.; Uhrlandt, D.
    We present results obtained by two non-equilibrium modelling approaches and experiments on low-intensity short-length arcs in argon at atmospheric pressure. The first one considers a quasi-neutral arc column combined with boundary conditions on the electrodes based on the energy balance in the space-charge sheaths. The second approach applies a unified description over the entire gap and solves the Poisson equation for the self-consistent electric field. The experiments provide the arc voltage.
  • Item
    Modelling and experimental investigations of DC electric arcs in argon and carbon dioxide
    (Praha : Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Physics, 2019) Mohsni, C.; Baeva, M.; Franke, S.; Gortschakow, S.; Gonzalez, D.; Araoud, Z.; Charrada, K.
    In this work an arc model is employed along with electric and spectroscopic measurements to study DC electric arcs in Ar and CO2. The model is aimed at describing the arc and the electrodes. Simulation and experimental results are shown for currents between 150 A and 210 A.
  • Item
    On the interaction of a microwave excited oxygen plasma with a jet of precursor material for deposition applications
    (Praha : Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Physics, 2019) Methling, R.; Hempel, F.; Baeva, M.; Trautvetter, T.; Baierl, H.; Foest, R.
    A plasma source based on a microwave discharge at atmospheric pressure is used to produce an oxygen plasma torch. A liquid precursor material is evaporated and injected into the torch through a nozzle, causing oxidization and deposition of silica at a nearby quartz substrate. The temperature generated inside the plasma source and in the plume, in the region of treatment, and at the substrate surface are key parameters, which are needed for process description and optimization of plasma-chemical reactions. Optical emission spectroscopy and thermography were applied to observe and characterize the jet behavior and composition. The experimental results are compared with self-consistent modeling.