Search Results

Now showing 1 - 3 of 3
  • Item
    Composite materials for innovative urban farming of alternative food sources (macroalgae and crickets)
    (Lausanne : Frontiers Media, 2022) Fricke, Anna; Psarianos, Marios; Sabban, Jakob; Fitzner, Maria; Reipsch, Riccardo; Schlüter, Oliver K.; Dreyer, Christian; Vogt, Julia H.-M.; Schreiner, Monika; Baldermann, Susanne
    Facing an inexorable growth of the human population along with substantial environmental changes, the assurance of food security is a major challenge of the present century. To ensure responsible food consumption and production (SDG 12), new approaches in the food system are required. Thus, environmentally controlled, sustainable production of alternative food sources are of key interest for both urban agriculture and food research. To face the current challenge of integrating food production systems within existing structures, multidisciplinary discourses are required. Here, we bring together novel technologies and indoor farming techniques with the aim of supporting the development of sustainable food production systems. For this purpose, we investigated the feasibility of 10 composite materials for their innovative use as structural support in macroalgal cultivation (settlement substrates) and cricket rearing (housing). Considering material resistance, rigidity, and direct material-organism interactions, the bio-based composite polylactic acid (PLA) was identified as a suitable material for joint farming. For macroalgae cultivation, PLA sustained the corrosive cultivation conditions and provided a suitable substrate without affecting the macroalgal physiology or nutritional composition (carotenoids and chlorophylls). For cricket rearing, PLA provided a suitable and recyclable shelter, which was quickly accepted by the animals without any observed harm. In contrast, other common composite components like phenolic resin or aramid were found to be unsuitable due to being harmful for the cultivated organisms or instable toward the applied sterilization procedure. This multidisciplinary study not only provides profound insights in the developing field of urban indoor food production from a new perspective, but also bridges material science and farming approaches to develop new sustainable and resilient food production systems.
  • Item
    Effect of Narrowband UV-B Irradiation on the Growth Performance of House Crickets
    (Basel : MDPI, 2022) Psarianos, Marios; Fricke, Anna; Ojha, Shikha; Baldermann, Susanne; Schreiner, Monika; Schlüter, Oliver K.
    Indoor co-cultivation systems can answer to the need for sustainable and resilient food production systems. Rearing organisms under light-emitting diodes (LEDs) irradiation provides the possibility to control and shape the emitted light spectra. UV-B-irradiation (280–315 nm) can positively affect the nutritional composition of different plants and other organisms, whereas information on edible insects is scarce. To evaluate the potential effect of the photosynthetically active radiation (PAR) and LED-emitting LEDs on the rearing and nutritional quality of edible insects, house crickets (Acheta domesticus) were reared from the age of 21 days under controlled LED spectra, with an additional UV-B (0.08 W/m2) dose of 1.15 KJm2 d−1 (illuminated over a period for 4 h per day) for 34 days. UV-B exposure showed no harm to the weight of the crickets and significantly increased their survival by ca. 10% under narrowband UV-B treatment. The nutritional composition including proteins, fat and chitin contents of the insects was not affected by the UV-B light and reached values of 60.03 ± 10.41, 22.38 ± 2.12 and 9.33 ± 1.21%, respectively, under the LED irradiation. Therefore, house crickets can grow under LED irradiation with a positive effect of narrowband UV-B application on their survival.
  • Item
    Subsequent treatment of leafy vegetables with low doses of UVB-radiation does not provoke cytotoxicity, genotoxicity, or oxidative stress in a human liver cell model
    (Amsterdam [u.a.] : Elsevier, 2021) Wiesner-Reinhold, Melanie; Dutra Gomes, João Victor; Herz, Corinna; Tran, Hoai Thi Thu; Baldermann, Susanne; Neugart, Susanne; Filler, Thomas; Glaab, Johannes; Einfeldt, Sven; Schreiner, Monika; Lamy, Evelyn
    Ultraviolet B (UVB) radiation in low but ecological-relevant doses acts as a regulator in the plant's secondary metabolism. This study investigates the effect of UVB radiation from light-emitting diodes (LEDs) [peak wavelength of (290 ± 2) nm] on the biosynthesis of health-promoting secondary plant metabolites (carotenoids, phenolic compounds, and glucosinolates) of green and red leafy vegetables of Lactuca sativa, Brassica campestris, and Brassica juncea followed by evaluation of potential adverse effects in a human liver cell model. UVB radiation led to a significant increase in individual secondary plant metabolites, especially of phenolic compounds and glucosinolates, e.g. alkenyl glucosinolate content. Kaempferol und quercetin glycoside concentrations were also significantly increased compared to untreated plants. The plant extracts from Lactuca sativa, Brassica campestris, and Brassica juncea were used to assess cytotoxicity (WST-1 assay and trypan blue staining), genotoxicity (Comet assay), and production of reactive oxygen species (EPR) using metabolically competent human-derived HepG2 liver cells. No adverse effects in terms of cytotoxicity, genotoxicity, or oxidative stress were detected in an extract concentration ranging from 3.125 to 100 μg ml−1. Notably, only at very high concentrations were marginal cytostatic effects observed in extracts from UVB-treated as well as untreated plants. In conclusion, the application of UVB radiation from LEDs changes structure-specific health-promoting secondary plant metabolites without damaging the plants. The treatment did not result in adverse effects at the human cell level. Based on these findings, UVB LEDs are a future alternative, promising light source to replace currently commonly used high-pressure sodium lamps in greenhouses.