Search Results

Now showing 1 - 2 of 2
  • Item
    A regime shift in the Sun-Climate connection with the end of the Medieval Climate Anomaly
    (London : Nature Publishing Group, 2017) Smirnov, D.A.; Breitenbach, S.F.M.; Feulner, G.; Lechleitner, F.A.; Prufer, K.M.; Baldini, J.U.L.; Marwan, N.; Kurths, J.
    Understanding the influence of changes in solar activity on Earth's climate and distinguishing it from other forcings, such as volcanic activity, remains a major challenge for palaeoclimatology. This problem is best approached by investigating how these variables influenced past climate conditions as recorded in high precision paleoclimate archives. In particular, determining if the climate system response to these forcings changes through time is critical. Here we use the Wiener-Granger causality approach along with well-established cross-correlation analysis to investigate the causal relationship between solar activity, volcanic forcing, and climate as reflected in well-established Intertropical Convergence Zone (ITCZ) rainfall proxy records from Yok Balum Cave, southern Belize. Our analysis reveals a consistent influence of volcanic activity on regional Central American climate over the last two millennia. However, the coupling between solar variability and local climate varied with time, with a regime shift around 1000-1300 CE after which the solar-climate coupling weakened considerably.
  • Item
    Tropical rainfall over the last two millennia: Evidence for a low-latitude hydrologic seesaw
    (London : Nature Publishing Group, 2017) Lechleitner, F.A.; Breitenbach, S.F.M.; Rehfeld, K.; Ridley, H.E.; Asmerom, Y.; Prufer, K.M.; Marwan, N.; Goswami, B.; Kennett, D.J.; Aquino, V.V.; Polyak, V.; Haug, G.H.; Eglinton, T.I.; Baldini, J.U.L.
    The presence of a low-to mid-latitude interhemispheric hydrologic seesaw is apparent over orbital and glacial-interglacial timescales, but its existence over the most recent past remains unclear. Here we investigate, based on climate proxy reconstructions from both hemispheres, the inter-hemispherical phasing of the Intertropical Convergence Zone (ITCZ) and the low-to mid-latitude teleconnections in the Northern Hemisphere over the past 2000 years. A clear feature is a persistent southward shift of the ITCZ during the Little Ice Age until the beginning of the 19th Century. Strong covariation between our new composite ITCZ-stack and North Atlantic Oscillation (NAO) records reveals a tight coupling between these two synoptic weather and climate phenomena over decadal-to-centennial timescales. This relationship becomes most apparent when comparing two precisely dated, high-resolution paleorainfall records from Belize and Scotland, indicating that the low-to mid-latitude teleconnection was also active over annual-decadal timescales. It is likely a combination of external forcing, i.e., solar and volcanic, and internal feedbacks, that drives the synchronous ITCZ and NAO shifts via energy flux perturbations in the tropics.