Search Results

Now showing 1 - 3 of 3
  • Item
    The GGCMI Phase 2 experiment: Global gridded crop model simulations under uniform changes in CO2, temperature, water, and nitrogen levels (protocol version 1.0)
    (Katlenburg-Lindau : Copernicus, 2020) Franke, James A.; Müller, Christoph; Elliott, Joshua; Ruane, Alex C.; Jägermeyr, Jonas; Balkovic, Juraj; Ciais, Philippe; Dury, Marie; Falloon, Pete D.; Folberth, Christian; François, Louis; Hank, Tobias; Hoffmann, Munir; Izaurralde, R. Cesar; Jacquemin, Ingrid; Jones, Curtis; Khabarov, Nikolay; Koch, Marian; Li, Michelle; Liu, Wenfeng; Olin, Stefan; Phillips, Meridel; Pugh, Thomas A. M.; Reddy, Ashwan; Wang, Xuhui; Williams, Karina; Zabel, Florian; Moyer, Elisabeth J.
    Concerns about food security under climate change motivate efforts to better understand future changes in crop yields. Process-based crop models, which represent plant physiological and soil processes, are necessary tools for this purpose since they allow representing future climate and management conditions not sampled in the historical record and new locations to which cultivation may shift. However, process-based crop models differ in many critical details, and their responses to different interacting factors remain only poorly understood. The Global Gridded Crop Model Intercomparison (GGCMI) Phase 2 experiment, an activity of the Agricultural Model Intercomparison and Improvement Project (AgMIP), is designed to provide a systematic parameter sweep focused on climate change factors and their interaction with overall soil fertility, to allow both evaluating model behavior and emulating model responses in impact assessment tools. In this paper we describe the GGCMI Phase 2 experimental protocol and its simulation data archive. A total of 12 crop models simulate five crops with systematic uniform perturbations of historical climate, varying CO2, temperature, water supply, and applied nitrogen (“CTWN”) for rainfed and irrigated agriculture, and a second set of simulations represents a type of adaptation by allowing the adjustment of growing season length. We present some crop yield results to illustrate general characteristics of the simulations and potential uses of the GGCMI Phase 2 archive. For example, in cases without adaptation, modeled yields show robust decreases to warmer temperatures in almost all regions, with a nonlinear dependence that means yields in warmer baseline locations have greater temperature sensitivity. Inter-model uncertainty is qualitatively similar across all the four input dimensions but is largest in high-latitude regions where crops may be grown in the future.
  • Item
    Global gridded crop model evaluation: Benchmarking, skills, deficiencies and implications
    (München : European Geopyhsical Union, 2017) Müller, Christoph; Elliott, Joshua; Chryssanthacopoulos, James; Arneth, Almut; Balkovic, Juraj; Ciais, Philippe; Deryng, Delphine; Folberth, Christian; Glotter, Michael; Hoek, Steven; Iizumi, Toshichika; Izaurralde, Roberto C.; Jones, Curtis; Khabarov, Nikolay; Lawrence, Peter; Liu, Wenfeng; Olin, Stefan; Pugh, Thomas A.M.; Ray, Deepak K.; Reddy, Ashwan; Rosenzweig, Cynthia; Ruane, Alex C.; Sakurai, Gen; Schmid, Erwin; Skalsky, Rastislav; Song, Carol X.; Wang, Xuhui; de Wit, Allard; Yang, Hong
    Crop models are increasingly used to simulate crop yields at the global scale, but so far there is no general framework on how to assess model performance. Here we evaluate the simulation results of 14 global gridded crop modeling groups that have contributed historic crop yield simulations for maize, wheat, rice and soybean to the Global Gridded Crop Model Intercomparison (GGCMI) of the Agricultural Model Intercomparison and Improvement Project (AgMIP). Simulation results are compared to reference data at global, national and grid cell scales and we evaluate model performance with respect to time series correlation, spatial correlation and mean bias. We find that global gridded crop models (GGCMs) show mixed skill in reproducing time series correlations or spatial patterns at the different spatial scales. Generally, maize, wheat and soybean simulations of many GGCMs are capable of reproducing larger parts of observed temporal variability (time series correlation coefficients (r) of up to 0.888 for maize, 0.673 for wheat and 0.643 for soybean at the global scale) but rice yield variability cannot be well reproduced by most models. Yield variability can be well reproduced for most major producing countries by many GGCMs and for all countries by at least some. A comparison with gridded yield data and a statistical analysis of the effects of weather variability on yield variability shows that the ensemble of GGCMs can explain more of the yield variability than an ensemble of regression models for maize and soybean, but not for wheat and rice. We identify future research needs in global gridded crop modeling and for all individual crop modeling groups. In the absence of a purely observation-based benchmark for model evaluation, we propose that the best performing crop model per crop and region establishes the benchmark for all others, and modelers are encouraged to investigate how crop model performance can be increased. We make our evaluation system accessible to all crop modelers so that other modeling groups can also test their model performance against the reference data and the GGCMI benchmark.
  • Item
    The Global Gridded Crop Model Intercomparison phase 1 simulation dataset
    (London : Nature Publ. Group, 2019) Müller, Christoph; Elliott, Joshua; Kelly, David; Arneth, Almut; Balkovic, Juraj; Ciais, Philippe; Deryng, Delphine; Folberth, Christian; Hoek, Steven; Izaurralde, Roberto C.; Jones, Curtis D.; Khabarov, Nikolay; Lawrence, Peter; Liu, Wenfeng; Olin, Stefan; Pugh, Thomas A. M.; Reddy, Ashwan; Rosenzweig, Cynthia; Ruane, Alex C.; Sakurai, Gen; Schmid, Erwin; Skalsky, Rastislav; Wang, Xuhui; de Wit, Allard; Yang, Hong
    The Global Gridded Crop Model Intercomparison (GGCMI) phase 1 dataset of the Agricultural Model Intercomparison and Improvement Project (AgMIP) provides an unprecedentedly large dataset of crop model simulations covering the global ice-free land surface. The dataset consists of annual data fields at a spatial resolution of 0.5 arc-degree longitude and latitude. Fourteen crop modeling groups provided output for up to 11 historical input datasets spanning 1901 to 2012, and for up to three different management harmonization levels. Each group submitted data for up to 15 different crops and for up to 14 output variables. All simulations were conducted for purely rainfed and near-perfectly irrigated conditions on all land areas irrespective of whether the crop or irrigation system is currently used there. With the publication of the GGCMI phase 1 dataset we aim to promote further analyses and understanding of crop model performance, potential relationships between productivity and environmental impacts, and insights on how to further improve global gridded crop model frameworks. We describe dataset characteristics and individual model setup narratives. © 2019, The Author(s).