Search Results

Now showing 1 - 2 of 2
  • Item
    Size-dependent particle activation properties in fog during the ParisFog 2012/13 field campaign
    (Göttingen : Copernicus, 2014) Hammer, E.; Gysel, M.; Roberts, G.C.; Elias, T.; Hofer, J.; Hoyle, C.R.; Bukowiecki, N.; Dupont, J.-C.; Burnet, F.; Baltensperger, U.; Weingartner, E.
    Fog-induced visibility reduction is responsible for a variety of hazards in the transport sector. Therefore there is a large demand for an improved understanding of fog formation and thus improved forecasts. Improved fog forecasts require a better understanding of the numerous complex mechanisms during the fog life cycle. During winter 2012/13 a field campaign called ParisFog aiming at fog research took place at SIRTA (Instrumented Site for Atmospheric Remote Sensing Research). SIRTA is located about 20 km southwest of the Paris city center, France, in a semi-urban environment. In situ activation properties of the prevailing fog were investigated by measuring (1) total and interstitial (non-activated) dry particle number size distributions behind two different inlet systems; (2) interstitial hydrated aerosol and fog droplet size distributions at ambient conditions; and (3) cloud condensation nuclei (CCN) number concentration at different supersaturations (SS) with a CCN counter. The aerosol particles were characterized regarding their hygroscopic properties, fog droplet activation behavior and contribution to light scattering for 17 developed fog events. Low particle hygroscopicity with an overall median of the hygroscopicity parameter, κ, of 0.14 was found, likely caused by substantial influence from local traffic and wood burning emissions. Measurements of the aerosol size distribution at ambient RH revealed that the critical wet diameter, above which the hydrated aerosols activate to fog droplets, is rather large (with a median value of 2.6μm) and is highly variable (ranging from 1 to 5μm) between the different fog events. Thus, the number of activated fog droplets was very small and the non-activated hydrated particles were found to contribute significantly to the observed light scattering and thus to the reduction in visibility. Combining all experimental data, the effective peak supersaturation, SSpeak, a measure of the peak supersaturation during the fog formation, was determined. The median SSpeak value was estimated to be in the range from 0.031 to 0.046% (upper and lower limit estimations), which is in good agreement with previous experimental and modeling studies of fog.
  • Item
    A synthesis of cloud condensation nuclei counter (CCNC) measurements within the EUCAARI network
    (München : European Geopyhsical Union, 2015) Paramonov, M.; Kerminen, V.-M.; Gysel, M.; Aalto, P.P.; Andreae, M.O.; Asmi, E.; Baltensperger, U.; Bougiatioti, A.; Brus, D.; Frank, G.P.; Good, N.; Gunthe, S.S.; Hao, L.; Irwin, M.; Jaatinen, A.; Jurányi, Z.; King, S.M.; Kortelainen, A.; Kristensson, A.; Lihavainen, H.; Kulmala, M.; Lohmann, U.; Martin, S.T.; McFiggans, G.; Mihalopoulos, N.; Nenes, A.; O'Dowd, C.D.; Ovadnevaite, J.; Petäjä, T.; Pöschl, U.; Roberts, G.C.; Rose, D.; Svenningsson, B.; Swietlicki, E.; Weingartner, E.; Whitehead, J.; Wiedensohler, A.; Wittbom, C.; Sierau, B.
    Cloud condensation nuclei counter (CCNC) measurements performed at 14 locations around the world within the European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) framework have been analysed and discussed with respect to the cloud condensation nuclei (CCN) activation and hygroscopic properties of the atmospheric aerosol. The annual mean ratio of activated cloud condensation nuclei (NCCN) to the total number concentration of particles (NCN), known as the activated fraction A, shows a similar functional dependence on supersaturation S at many locations – exceptions to this being certain marine locations, a free troposphere site and background sites in south-west Germany and northern Finland. The use of total number concentration of particles above 50 and 100 nm diameter when calculating the activated fractions (A50 and A100, respectively) renders a much more stable dependence of A on S; A50 and A100 also reveal the effect of the size distribution on CCN activation. With respect to chemical composition, it was found that the hygroscopicity of aerosol particles as a function of size differs among locations. The hygroscopicity parameter κ decreased with an increasing size at a continental site in south-west Germany and fluctuated without any particular size dependence across the observed size range in the remote tropical North Atlantic and rural central Hungary. At all other locations κ increased with size. In fact, in Hyytiälä, Vavihill, Jungfraujoch and Pallas the difference in hygroscopicity between Aitken and accumulation mode aerosol was statistically significant at the 5 % significance level. In a boreal environment the assumption of a size-independent κ can lead to a potentially substantial overestimation of NCCN at S levels above 0.6 %. The same is true for other locations where κ was found to increase with size. While detailed information about aerosol hygroscopicity can significantly improve the prediction of NCCN, total aerosol number concentration and aerosol size distribution remain more important parameters. The seasonal and diurnal patterns of CCN activation and hygroscopic properties vary among three long-term locations, highlighting the spatial and temporal variability of potential aerosol–cloud interactions in various environments.