Search Results

Now showing 1 - 2 of 2
  • Item
    Size-dependent particle activation properties in fog during the ParisFog 2012/13 field campaign
    (Göttingen : Copernicus, 2014) Hammer, E.; Gysel, M.; Roberts, G.C.; Elias, T.; Hofer, J.; Hoyle, C.R.; Bukowiecki, N.; Dupont, J.-C.; Burnet, F.; Baltensperger, U.; Weingartner, E.
    Fog-induced visibility reduction is responsible for a variety of hazards in the transport sector. Therefore there is a large demand for an improved understanding of fog formation and thus improved forecasts. Improved fog forecasts require a better understanding of the numerous complex mechanisms during the fog life cycle. During winter 2012/13 a field campaign called ParisFog aiming at fog research took place at SIRTA (Instrumented Site for Atmospheric Remote Sensing Research). SIRTA is located about 20 km southwest of the Paris city center, France, in a semi-urban environment. In situ activation properties of the prevailing fog were investigated by measuring (1) total and interstitial (non-activated) dry particle number size distributions behind two different inlet systems; (2) interstitial hydrated aerosol and fog droplet size distributions at ambient conditions; and (3) cloud condensation nuclei (CCN) number concentration at different supersaturations (SS) with a CCN counter. The aerosol particles were characterized regarding their hygroscopic properties, fog droplet activation behavior and contribution to light scattering for 17 developed fog events. Low particle hygroscopicity with an overall median of the hygroscopicity parameter, κ, of 0.14 was found, likely caused by substantial influence from local traffic and wood burning emissions. Measurements of the aerosol size distribution at ambient RH revealed that the critical wet diameter, above which the hydrated aerosols activate to fog droplets, is rather large (with a median value of 2.6μm) and is highly variable (ranging from 1 to 5μm) between the different fog events. Thus, the number of activated fog droplets was very small and the non-activated hydrated particles were found to contribute significantly to the observed light scattering and thus to the reduction in visibility. Combining all experimental data, the effective peak supersaturation, SSpeak, a measure of the peak supersaturation during the fog formation, was determined. The median SSpeak value was estimated to be in the range from 0.031 to 0.046% (upper and lower limit estimations), which is in good agreement with previous experimental and modeling studies of fog.
  • Item
    Formation of organic aerosol in the Paris region during the MEGAPOLI summer campaign: Evaluation of the volatility-basis-set approach within the CHIMERE model
    (Göttingen : Copernicus, 2013) Zhang, Q.J.; Beekmann, M.; Drewnick, F.; Freutel, F.; Schneider, J.; Crippa, M.; Prevot, A.S.H.; Baltensperger, U.; Poulain, L.; Wiedensohler, A.; Sciare, J.; Gros, V.; Borbon, A.; Colomb, A.; Michoud, V.; Doussin, J.-F.; Denier Van Der Gon, H.A.C.; Haeffelin, M.; Dupont, J.-C.; Siour, G.; Petetin, H.; Bessagnet, B.; Pandis, S.N.; Hodzic, A.; Sanchez, O.; Honoré, C.; Perrussel, O.
    Simulations with the chemistry transport model CHIMERE are compared to measurements performed during the MEGAPOLI (Megacities: Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation) summer campaign in the Greater Paris region in July 2009. The volatility-basis-set approach (VBS) is implemented into this model, taking into account the volatility of primary organic aerosol (POA) and the chemical aging of semi-volatile organic species. Organic aerosol is the main focus and is simulated with three different configurations with a modified treatment of POA volatility and modified secondary organic aerosol (SOA) formation schemes. In addition, two types of emission inventories are used as model input in order to test the uncertainty related to the emissions. Predictions of basic meteorological parameters and primary and secondary pollutant concentrations are evaluated, and four pollution regimes are defined according to the air mass origin. Primary pollutants are generally overestimated, while ozone is consistent with observations. Sulfate is generally overestimated, while ammonium and nitrate levels are well simulated with the refined emission data set. As expected, the simulation with non-volatile POA and a single-step SOA formation mechanism largely overestimates POA and underestimates SOA. Simulation of organic aerosol with the VBS approach taking into account the aging of semi-volatile organic compounds (SVOC) shows the best correlation with measurements. High-concentration events observed mostly after long-range transport are well reproduced by the model. Depending on the emission inventory used, simulated POA levels are either reasonable or underestimated, while SOA levels tend to be overestimated. Several uncertainties related to the VBS scheme (POA volatility, SOA yields, the aging parameterization), to emission input data, and to simulated OH levels can be responsible for this behavior. Despite these uncertainties, the implementation of the VBS scheme into the CHIMERE model allowed for much more realistic organic aerosol simulations for Paris during summertime. The advection of SOA from outside Paris is mostly responsible for the highest OA concentration levels. During advection of polluted air masses from northeast (Benelux and Central Europe), simulations indicate high levels of both anthropogenic and biogenic SOA fractions, while biogenic SOA dominates during periods with advection from Southern France and Spain.