Search Results

Now showing 1 - 9 of 9
Loading...
Thumbnail Image
Item

A global analysis of climate-relevant aerosol properties retrieved from the network of Global Atmosphere Watch (GAW) near-surface observatories

2020, Laj, Paolo, Bigi, Alessandro, Rose, Clémence, Andrews, Elisabeth, Lund Myhre, Cathrine, Collaud Coen, Martine, Lin, Yong, Wiedensohler, Alfred, Schulz, Michael, Ogren, John A., Fiebig, Markus, Prenni, Anthony, Reisen, Fabienne, Romano, Salvatore, Sellegri, Karine, Sharma, Sangeeta, Schauer, Gerhard, Sheridan, Patrick, Sherman, James Patrick, Schütze, Maik, Schwerin, Andreas, Tuch, Thomas, Sohmer, Ralf, Sorribas, Mar, Steinbacher, Martin, Sun, Junying, Titos, Gloria, Toczko, Barbara, Tulet, Pierre, Tunved, Peter, Vakkari, Ville, Velarde, Fernando, Velasquez, Patricio, Villani, Paolo, Vratolis, Sterios, Wang, Sheng-Hsiang, Weinhold, Kay, Gliß, Jonas, Weller, Rolf, Yela, Margarita, Yus-Diez, Jesus, Zdimal, Vladimir, Zieger, Paul, Zikova, Nadezda, Mortier, Augustin, Pandolfi, Marco, Petäja, Tuukka, Kim, Sang-Woo, Aas, Wenche, Putaud, Jean-Philippe, Mayol-Bracero, Olga, Keywood, Melita, Labrador, Lorenzo, Aalto, Pasi, Ahlberg, Erik, Alados Arboledas, Lucas, Alastuey, Andrés, Andrade, Marcos, Artíñano, Begoña, Ausmeel, Stina, Arsov, Todor, Asmi, Eija, Backman, John, Baltensperger, Urs, Bastian, Susanne, Bath, Olaf, Beukes, Johan Paul, Brem, Benjamin T., Bukowiecki, Nicolas, Conil, Sébastien, Couret, Cedric, Day, Derek, Dayantolis, Wan, Degorska, Anna, Eleftheriadis, Konstantinos, Fetfatzis, Prodromos, Favez, Olivier, Flentje, Harald, Gini, Maria I., Gregorič, Asta, Gysel-Beer, Martin, Hallar, A. Gannet, Hand, Jenny, Hoffer, Andras, Hueglin, Christoph, Hooda, Rakesh K., Hyvärinen, Antti, Kalapov, Ivo, Kalivitis, Nikos, Kasper-Giebl, Anne, Kim, Jeong Eun, Kouvarakis, Giorgos, Kranjc, Irena, Krejci, Radovan, Kulmala, Markku, Labuschagne, Casper, Lee, Hae-Jung, Lihavainen, Heikki, Lin, Neng-Huei, Löschau, Gunter, Luoma, Krista, Marinoni, Angela, Martins Dos Santos, Sebastiao, Meinhardt, Frank, Merkel, Maik, Metzger, Jean-Marc, Mihalopoulos, Nikolaos, Nguyen, Nhat Anh, Ondracek, Jakub, Pérez, Noemi, Perrone, Maria Rita, Petit, Jean-Eudes, Picard, David, Pichon, Jean-Marc, Pont, Veronique, Prats, Natalia

Aerosol particles are essential constituents of the Earth's atmosphere, impacting the earth radiation balance directly by scattering and absorbing solar radiation, and indirectly by acting as cloud condensation nuclei. In contrast to most greenhouse gases, aerosol particles have short atmospheric residence times, resulting in a highly heterogeneous distribution in space and time. There is a clear need to document this variability at regional scale through observations involving, in particular, the in situ near-surface segment of the atmospheric observation system. This paper will provide the widest effort so far to document variability of climate-relevant in situ aerosol properties (namely wavelength dependent particle light scattering and absorption coefficients, particle number concentration and particle number size distribution) from all sites connected to the Global Atmosphere Watch network. High-quality data from almost 90 stations worldwide have been collected and controlled for quality and are reported for a reference year in 2017, providing a very extended and robust view of the variability of these variables worldwide. The range of variability observed worldwide for light scattering and absorption coefficients, single-scattering albedo, and particle number concentration are presented together with preliminary information on their long-term trends and comparison with model simulation for the different stations. The scope of the present paper is also to provide the necessary suite of information, including data provision procedures, quality control and analysis, data policy, and usage of the ground-based aerosol measurement network. It delivers to users of the World Data Centre on Aerosol, the required confidence in data products in the form of a fully characterized value chain, including uncertainty estimation and requirements for contributing to the global climate monitoring system.

Loading...
Thumbnail Image
Item

Global analysis of continental boundary layer new particle formation based on long-term measurements

2018, Nieminen, Tuomo, Kerminen, Veli-Matti, Petäjä, Tuukka, Aalto, Pasi P., Arshinov, Mikhail, Asmi, Eija, Baltensperger, Urs, Beddows, David C. S., Beukes, Johan Paul, Collins, Don, Ding, Aijun, Harrison, Roy M., Henzing, Bas, Hooda, Rakesh, Hu, Min, Hõrrak, Urmas, Kivekäs, Niku, Komsaare, Kaupo, Krejci, Radovan, Kristensson, Adam, Laakso, Lauri, Laaksonen, Ari, Leaitch, W. Richard, Lihavainen, Heikki, Mihalopoulos, Nikolaos, Németh, Zoltán, Nie, Wei, O'Dowd, Colin, Salma, Imre, Sellegri, Karine, Svenningsson, Birgitta, Swietlicki, Erik, Tunved, Peter, Ulevicius, Vidmantas, Vakkari, Ville, Vana, Marko, Wiedensohler, Alfred, Wu, Zhijun, Virtanen, Annele, Kulmala, Markku

Atmospheric new particle formation (NPF) is an important phenomenon in terms of global particle number concentrations. Here we investigated the frequency of NPF, formation rates of 10 nm particles, and growth rates in the size range of 10–25 nm using at least 1 year of aerosol number size-distribution observations at 36 different locations around the world. The majority of these measurement sites are in the Northern Hemisphere. We found that the NPF frequency has a strong seasonal variability. At the measurement sites analyzed in this study, NPF occurs most frequently in March–May (on about 30 % of the days) and least frequently in December-February (about 10 % of the days). The median formation rate of 10 nm particles varies by about 3 orders of magnitude (0.01–10 cm−3 s−1) and the growth rate by about an order of magnitude (1–10 nm h−1). The smallest values of both formation and growth rates were observed at polar sites and the largest ones in urban environments or anthropogenically influenced rural sites. The correlation between the NPF event frequency and the particle formation and growth rate was at best moderate among the different measurement sites, as well as among the sites belonging to a certain environmental regime. For a better understanding of atmospheric NPF and its regional importance, we would need more observational data from different urban areas in practically all parts of the world, from additional remote and rural locations in North America, Asia, and most of the Southern Hemisphere (especially Australia), from polar areas, and from at least a few locations over the oceans.

Loading...
Thumbnail Image
Item

A European aerosol phenomenology - 6: Scattering properties of atmospheric aerosol particles from 28 ACTRIS sites

2018, Pandolfi, Marco, Alados-Arboledas, Lucas, Alastuey, Andrés, Andrade, Marcos, Angelov, Christo, Artiñano, Begoña, Backman, John, Baltensperger, Urs, Bonasoni, Paolo, Bukowiecki, Nicolas, Collaud Coen, Martine, Conil, Sébastien, Coz, Esther, Crenn, Vincent, Dudoitis, Vadimas, Ealo, Marina, Eleftheriadis, Kostas, Favez, Olivier, Fetfatzis, Prodromos, Fiebig, Markus, Flentje, Harald, Ginot, Patrick, Gysel, Martin, Henzing, Bas, Hoffer, Andras, Holubova Smejkalova, Adela, Kalapov, Ivo, Kalivitis, Nikos, Kouvarakis, Giorgos, Kristensson, Adam, Kulmala, Markku, Lihavainen, Heikki, Lunder, Chris, Luoma, Krista, Lyamani, Hassan, Marinoni, Angela, Mihalopoulos, Nikos, Moerman, Marcel, Nicolas, José, O'Dowd, Colin, Petäjä, Tuukka, Petit, Jean-Eudes, Pichon, Jean Marc, Prokopciuk, Nina, Putaud, Jean-Philippe, Rodríguez, Sergio, Sciare, Jean, Sellegri, Karine, Swietlicki, Erik, Titos, Gloria, Tuch, Thomas, Tunved, Peter, Ulevicius, Vidmantas, Vaishya, Aditya, Vana, Milan, Virkkula, Aki, Vratolis, Stergios, Weingartner, Ernest, Wiedensohler, Alfred, Laj, Paolo

This paper presents the light-scattering properties of atmospheric aerosol particles measured over the past decade at 28 ACTRIS observatories, which are located mainly in Europe. The data include particle light scattering (σsp) and hemispheric backscattering (σbsp) coefficients, scattering Ångström exponent (SAE), backscatter fraction (BF) and asymmetry parameter (g). An increasing gradient of σsp is observed when moving from remote environments (arctic/mountain) to regional and to urban environments. At a regional level in Europe, σsp also increases when moving from Nordic and Baltic countries and from western Europe to central/eastern Europe, whereas no clear spatial gradient is observed for other station environments. The SAE does not show a clear gradient as a function of the placement of the station. However, a west-to-east-increasing gradient is observed for both regional and mountain placements, suggesting a lower fraction of fine-mode particle in western/south-western Europe compared to central and eastern Europe, where the fine-mode particles dominate the scattering. The g does not show any clear gradient by station placement or geographical location reflecting the complex relationship of this parameter with the physical properties of the aerosol particles. Both the station placement and the geographical location are important factors affecting the intraannual variability. At mountain sites, higher σsp and SAE values are measured in the summer due to the enhanced boundary layer influence and/or new particle-formation episodes. Conversely, the lower horizontal and vertical dispersion during winter leads to higher σsp values at all low-altitude sites in central and eastern Europe compared to summer. These sites also show SAE maxima in the summer (with corresponding g minima). At all sites, both SAE and g show a strong variation with aerosol particle loading. The lowest values of g are always observed together with low σsp values, indicating a larger contribution from particles in the smaller accumulation mode. During periods of high σsp values, the variation of g is less pronounced, whereas the SAE increases or decreases, suggesting changes mostly in the coarse aerosol particle mode rather than in the fine mode. Statistically significant decreasing trends of σsp are observed at 5 out of the 13 stations included in the trend analyses. The total reductions of σsp are consistent with those reported for PM2.5 and PM10 mass concentrations over similar periods across Europe.

Loading...
Thumbnail Image
Item

A global study of hygroscopicity-driven light-scattering enhancement in the context of other in situ aerosol optical properties

2021, Titos, Gloria, Burgos, María A., Zieger, Paul, Alados-Arboledas, Lucas, Baltensperger, Urs, Jefferson, Anne, Sherman, James, Weingartner, Ernest, Henzing, Bas, Luoma, Krista, O'Dowd, Colin, Wiedensohler, Alfred, Andrews, Elisabeth

The scattering and backscattering enhancement factors (f (RH) and fb(RH)) describe how aerosol particle light scattering and backscattering, respectively, change with relative humidity (RH). They are important parameters in estimating direct aerosol radiative forcing (DARF). In this study we use the dataset presented in Burgos et al. (2019) that compiles f (RH) and fb(RH) measurements at three wavelengths (i.e., 450, 550 and 700 nm) performed with tandem nephelometer systems at multiple sites around the world. We present an overview of f (RH) and fb(RH) based on both long-term and campaign observations from 23 sites representing a range of aerosol types. The scattering enhancement shows a strong variability from site to site, with no clear pattern with respect to the total scattering coefficient. In general, higher f (RH) is observed at Arctic and marine sites, while lower values are found at urban and desert sites, although a consistent pattern as a function of site type is not observed. The backscattering enhancement fb(RH) is consistently lower than f (RH) at all sites, with the difference between f (RH) and fb(RH) increasing for aerosol with higher f (RH). This is consistent with Mie theory, which predicts higher enhancement of the light scattering in the forward than in the backward direction as the particle takes up water. Our results show that the scattering enhancement is higher for PM1 than PM10 at most sites, which is also supported by theory due to the change in scattering efficiency with the size parameter that relates particle size and the wavelength of incident light. At marine-influenced sites this difference is enhanced when coarse particles (likely sea salt) predominate. For most sites, f (RH) is observed to increase with increasing wavelength, except at sites with a known dust influence where the spectral dependence of f (RH) is found to be low or even exhibit the opposite pattern. The impact of RH on aerosol properties used to calculate radiative forcing (e.g., single-scattering albedo, w0, and backscattered fraction, b) is evaluated. The single-scattering albedo generally increases with RH, while b decreases. The net effect of aerosol hygroscopicity on radiative forcing efficiency (RFE) is an increase in the absolute forcing effect (negative sign) by a factor of up to 4 at RH D 90 % compared to dry conditions (RH < 40 %). Because of the scarcity of scattering enhancement measurements, an attempt was made to use other more commonly available aerosol parameters (i.e., w0 and scattering Ångström exponent, asp) to parameterize f (RH). The majority of sites (75 %) showed a consistent trend with w0 (higher f (RH D 85 %) for higher w0), while no clear pattern was observed between f (RH D 85 %) and asp. This suggests that aerosol w0 is more promising than asp as a surrogate for the scattering enhancement factor, although neither parameter is ideal. Nonetheless, the qualitative relationship observed between w0 and f (RH) could serve as a constraint on global model simulations. © 2021 The Author(s).

Loading...
Thumbnail Image
Item

Studying the vertical aerosol extinction coefficient by comparing in situ airborne data and elastic backscatter lidar

2016, Rosati, Bernadette, Herrmann, Erik, Bucci, Silvia, Fierli, Federico, Cairo, Francesco, Gysel, Martin, Tillmann, Ralf, Größ, Johannes, Gobbi, Gian Paolo, Liberto, Luca Di, Di Donfrancesco, Guido, Wiedensohler, Alfred, Weingartner, Ernest, Virtanen, Annele, Mentel, Thomas F., Baltensperger, Urs

Vertical profiles of aerosol particle optical properties were explored in a case study near the San Pietro Capofiume (SPC) ground station during the PEGASOS Po Valley campaign in the summer of 2012. A Zeppelin NT airship was employed to investigate the effect of the dynamics of the planetary boundary layer at altitudes between ∼  50 and 800 m above ground. Determined properties included the aerosol particle size distribution, the hygroscopic growth factor, the effective index of refraction and the light absorption coefficient. The first three parameters were used to retrieve the light scattering coefficient. Simultaneously, direct measurements of both the scattering and absorption coefficient were carried out at the SPC ground station. Additionally, a single wavelength polarization diversity elastic lidar system provided estimates of aerosol extinction coefficients using the Klett method to accomplish the inversion of the signal, for a vertically resolved comparison between in situ and remote-sensing results. Note, however, that the comparison was for the most part done in the altitude range where the overlap function is incomplete and accordingly uncertainties are larger. First, the airborne results at low altitudes were validated with the ground measurements. Agreement within approximately ±25 and ±20 % was found for the dry scattering and absorption coefficient, respectively. The single scattering albedo, ranged between 0.83 and 0.95, indicating the importance of the absorbing particles in the Po Valley region. A clear layering of the atmosphere was observed during the beginning of the flight (until ∼  10:00 LT – local time) before the mixing layer (ML) was fully developed. Highest extinction coefficients were found at low altitudes, in the new ML, while values in the residual layer, which could be probed at the beginning of the flight at elevated altitudes, were lower. At the end of the flight (after ∼  12:00 LT) the ML was fully developed, resulting in constant extinction coefficients at all altitudes measured on the Zeppelin NT. Lidar estimates captured these dynamic features well and good agreement was found for the extinction coefficients compared to the in situ results, using fixed lidar ratios (LR) between 30 and 70 sr for the altitudes probed with the Zeppelin. These LR are consistent with values for continental aerosol particles that can be expected in this region.

Loading...
Thumbnail Image
Item

Collocated observations of cloud condensation nuclei, particle size distributions, and chemical composition

2017, Schmale, Julia, Henning, Silvia, Henzing, Bas, Keskinen, Helmi, Sellegri, Karine, Ovadnevaite, Jurgita, Bougiatioti, Aikaterini, Kalivitis, Nikos, Stavroulas, Iasonas, Jefferson, Anne, Park, Minsu, Schlag, Patrick, Kristensson, Adam, Iwamoto, Yoko, Pringle, Kirsty, Reddington, Carly, Aalto, Pasi, Äijälä, Mikko, Baltensperger, Urs, Bialek, Jakub, Birmili, Wolfram, Bukowiecki, Nicolas, Ehn, Mikael, Fjæraa, Ann Mari, Fiebig, Markus, Frank, Göran, Fröhlich, Roman, Frumau, Arnoud, Furuya, Masaki, Hammer, Emanuel, Heikkinen, Liine, Herrmann, Erik, Holzinger, Rupert, Hyono, Hiroyuki, Kanakidou, Maria, Kiendler-Scharr, Astrid, Kinouchi, Kento, Kos, Gerard, Kulmala, Markku, Mihalopoulos, Nikolaos, Motos, Ghislain, Nenes, Athanasios, O’Dowd, Colin, Paramonov, Mikhail, Petäjä, Tuukka, Picard, David, Poulain, Laurent, Prévôt, André Stephan Henry, Slowik, Jay, Sonntag, Andre, Swietlicki, Erik, Svenningsson, Birgitta, Tsurumaru, Hiroshi, Wiedensohler, Alfred, Wittbom, Cerina, Ogren, John A., Matsuki, Atsushi, Yum, Seong Soo, Myhre, Cathrine Lund, Carslaw, Ken, Stratmann, Frank, Gysel, Martin

Cloud condensation nuclei (CCN) number concentrations alongside with submicrometer particle number size distributions and particle chemical composition have been measured at atmospheric observatories of the Aerosols, Clouds, and Trace gases Research InfraStructure (ACTRIS) as well as other international sites over multiple years. Here, harmonized data records from 11 observatories are summarized, spanning 98,677 instrument hours for CCN data, 157,880 for particle number size distributions, and 70,817 for chemical composition data. The observatories represent nine different environments, e.g., Arctic, Atlantic, Pacific and Mediterranean maritime, boreal forest, or high alpine atmospheric conditions. This is a unique collection of aerosol particle properties most relevant for studying aerosol-cloud interactions which constitute the largest uncertainty in anthropogenic radiative forcing of the climate. The dataset is appropriate for comprehensive aerosol characterization (e.g., closure studies of CCN), model-measurement intercomparison and satellite retrieval method evaluation, among others. Data have been acquired and processed following international recommendations for quality assurance and have undergone multiple stages of quality assessment.

Loading...
Thumbnail Image
Item

Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories

2018, Schmale, Julia, Henning, Silvia, Decesari, Stefano, Henzing, Bas, Keskinen, Helmi, Sellegri, Karine, Ovadnevaite, Jurgita, Pöhlker, Mira L., Brito, Joel, Bougiatioti, Aikaterini, Kristensson, Adam, Kalivitis, Nikos, Stavroulas, Iasonas, Carbone, Samara, Jefferson, Anne, Park, Minsu, Schlag, Patrick, Iwamoto, Yoko, Aalto, Pasi, Äijälä, Mikko, Bukowiecki, Nicolas, Ehn, Mikael, Frank, Göran, Fröhlich, Roman, Frumau, Arnoud, Herrmann, Erik, Herrmann, Hartmut, Holzinger, Rupert, Kos, Gerard, Kulmala, Markku, Mihalopoulos, Nikolaos, Nenes, Athanasios, O'Dowd, Colin, Petäjä, Tuukka, Picard, David, Pöhlker, Christopher, Pöschl, Ulrich, Poulain, Laurent, Prévôt, André Stephan Henry, Swietlicki, Erik, Andreae, Meinrat O., Artaxo, Paulo, Wiedensohler, Alfred, Ogren, John, Matsuki, Atsushi, Yum, Seong Soo, Stratmann, Frank, Baltensperger, Urs, Gysel, Martin

Aerosol-cloud interactions (ACI) constitute the single largest uncertainty in anthropogenic radiative forcing. To reduce the uncertainties and gain more confidence in the simulation of ACI, models need to be evaluated against observations, in particular against measurements of cloud condensation nuclei (CCN). Here we present a data set - ready to be used for model validation - of long-term observations of CCN number concentrations, particle number size distributions and chemical composition from 12 sites on 3 continents. Studied environments include coastal background, rural background, alpine sites, remote forests and an urban surrounding. Expectedly, CCN characteristics are highly variable across site categories. However, they also vary within them, most strongly in the coastal background group, where CCN number concentrations can vary by up to a factor of 30 within one season. In terms of particle activation behaviour, most continental stations exhibit very similar activation ratios (relative to particles 20nm) across the range of 0.1 to 1.0% supersaturation. At the coastal sites the transition from particles being CCN inactive to becoming CCN active occurs over a wider range of the supersaturation spectrum. Several stations show strong seasonal cycles of CCN number concentrations and particle number size distributions, e.g. at Barrow (Arctic haze in spring), at the alpine stations (stronger influence of polluted boundary layer air masses in summer), the rain forest (wet and dry season) or Finokalia (wildfire influence in autumn). The rural background and urban sites exhibit relatively little variability throughout the year, while short-term variability can be high especially at the urban site. The average hygroscopicity parameter, calculated from the chemical composition of submicron particles was highest at the coastal site of Mace Head (0.6) and lowest at the rain forest station ATTO (0.2-0.3). We performed closure studies based on -Köhler theory to predict CCN number concentrations. The ratio of predicted to measured CCN concentrations is between 0.87 and 1.4 for five different types of . The temporal variability is also well captured, with Pearson correlation coefficients exceeding 0.87. Information on CCN number concentrations at many locations is important to better characterise ACI and their radiative forcing. But long-term comprehensive aerosol particle characterisations are labour intensive and costly. Hence, we recommend operating migrating-CCNCs to conduct collocated CCN number concentration and particle number size distribution measurements at individual locations throughout one year at least to derive a seasonally resolved hygroscopicity parameter. This way, CCN number concentrations can only be calculated based on continued particle number size distribution information and greater spatial coverage of long-term measurements can be achieved.

Loading...
Thumbnail Image
Item

Vertical profiling of aerosol hygroscopic properties in the planetary boundary layer during the PEGASOS campaigns

2016, Rosati, Bernadette, Gysel, Martin, Rubach, Florian, Mentel, Thomas F., Goger, Brigitta, Poulain, Laurent, Schlag, Patrick, Miettinen, Pasi, Pajunoja, Aki, Virtanen, Annele, Baltink, Henk Klein, Henzing, J.S. Bas, Größ, Johannes, Gobbi, Gian Paolo, Wiedensohler, Alfred, Kiendler-Scharr, Astrid, Decesari, Stefano, Facchini, Maria Cristina, Weingartner, Ernest, Baltensperger, Urs

Vertical profiles of the aerosol particles hygroscopic properties, their mixing state as well as chemical composition were measured above northern Italy and the Netherlands. An aerosol mass spectrometer (AMS; for chemical composition) and a white-light humidified optical particle spectrometer (WHOPS; for hygroscopic growth) were deployed on a Zeppelin NT airship within the PEGASOS project. This allowed one to investigate the development of the different layers within the planetary boundary layer (PBL), providing a unique in situ data set for airborne aerosol particles properties in the first kilometre of the atmosphere. Profiles measured during the morning hours on 20 June 2012 in the Po Valley, Italy, showed an increased nitrate fraction at  ∼  100 m above ground level (a.g.l.) coupled with enhanced hygroscopic growth compared to  ∼  700 m a. g. l. This result was derived from both measurements of the aerosol composition and direct measurements of the hygroscopicity, yielding hygroscopicity parameters (κ) of 0.34  ±  0.12 and 0.19  ±  0.07 for 500 nm particles, at  ∼  100 and  ∼  700 m a. g. l., respectively. The difference is attributed to the structure of the PBL at this time of day which featured several independent sub-layers with different types of aerosols. Later in the day the vertical structures disappeared due to the mixing of the layers and similar aerosol particle properties were found at all probed altitudes (mean κ ≈ 0.18  ±  0.07). The aerosol properties observed at the lowest flight level (100 m a. g. l.) were consistent with parallel measurements at a ground site, both in the morning and afternoon. Overall, the aerosol particles were found to be externally mixed, with a prevailing hygroscopic fraction. The flights near Cabauw in the Netherlands in the fully mixed PBL did not feature altitude-dependent characteristics. Particles were also externally mixed and had an even larger hygroscopic fraction compared to the results in Italy. The mean κ from direct measurements was 0.28 ±  0.10, thus considerably higher than κ values measured in Italy in the fully mixed PBL.

Loading...
Thumbnail Image
Item

Influence of water uptake on the aerosol particle light scattering coefficients of the Central European aerosol

2014, Zieger, Paul, Fierz-Schmidhauser, Rahel, Poulain, Laurent, Müller, Thomas, Birmili, Wolfram, Spindler, Gerald, Wiedensohler, Alfred, Baltensperger, Urs, Weingartner, Ernest

The influence of aerosol water uptake on the aerosol particle light scattering was examined at the regional continental research site Melpitz, Germany. The scattering enhancement factor f(RH), defined as the aerosol particle scattering coefficient at a certain relative humidity (RH) divided by its dry value, was measured using a humidified nephelometer. The chemical composition and other microphysical properties were measured in parallel. f(RH) showed a strong variation, e.g. with values between 1.2 and 3.6 at RH85% and l550 nm. The chemical composition was found to be the main factor determining the magnitude of f(RH), since the magnitude of f(RH) clearly correlated with the inorganic mass fraction measured by an aerosol mass spectrometer (AMS). Hysteresis within the recorded humidograms was observed and explained by long-range transported sea salt. A closure study using Mie theory showed the consistency of the measured parameters.