Search Results

Now showing 1 - 2 of 2
  • Item
    Efficient Current Injection Into Single Quantum Dots Through Oxide-Confined p-n-Diodes
    (New York, NY : IEEE, 2016) Kantner, Markus; Bandelow, Uwe; Koprucki, Thomas; Schulze, Jan-Hindrik; Strittmatter, Andre; Wunsche, Hans-Jurgen
    Current injection into single quantum dots embedded in vertical p-n-diodes featuring oxide apertures is analyzed in the low-injection regime suitable for single-photon emitters. The experimental and theoretical evidence is found for a rapid lateral spreading of the carriers after passing the oxide aperture in the conventional p-i-n-design. By an alternative design employing p-doping up to the oxide aperture, the current spreading can be suppressed resulting in an enhanced current confinement and increased injection efficiencies, both, in the continuous wave and under pulsed excitation.
  • Item
    Multi-dimensional modeling and simulation of semiconductor nanophotonic devices
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Kantner, Markus; Höhne, Theresa; Koprucki, Thomas; Burger, Sven; Wünsche, Hans-Jürgen; Schmidt, Frank; Mielke, Alexander; Bandelow, Uwe
    Self-consistent modeling and multi-dimensional simulation of semiconductor nanophotonic devices is an important tool in the development of future integrated light sources and quantum devices. Simulations can guide important technological decisions by revealing performance bottlenecks in new device concepts, contribute to their understanding and help to theoretically explore their optimization potential. The efficient implementation of multi-dimensional numerical simulations for computer-aided design tasks requires sophisticated numerical methods and modeling techniques. We review recent advances in device-scale modeling of quantum dot based single-photon sources and laser diodes by self-consistently coupling the optical Maxwell equations with semiclassical carrier transport models using semi-classical and fully quantum mechanical descriptions of the optically active region, respectively. For the simulation of realistic devices with complex, multi-dimensional geometries, we have developed a novel hp-adaptive finite element approach for the optical Maxwell equations, using mixed meshes adapted to the multi-scale properties of the photonic structures. For electrically driven devices, we introduced novel discretization and parameter-embedding techniques to solve the drift-diffusion system for strongly degenerate semiconductors at cryogenic temperature. Our methodical advances are demonstrated on various applications, including vertical-cavity surface-emitting lasers, grating couplers and single-photon sources.