Search Results

Now showing 1 - 2 of 2
  • Item
    Semiconductor laser linewidth theory revisited
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Wenzel, Hans; Kantner, Markus; Radziunas, Mindaugas; Bandelow, Uwe
    More and more applications require semiconductor lasers distinguished not only by large modulation bandwidths or high output powers, but also by small spectral linewidths. The theoretical understanding of the root causes limiting the linewidth is therefore of great practical relevance. In this paper, we derive a general expression for the calculation of the spectral linewidth step by step in a self-contained manner. We build on the linewidth theory developed in the 1980s and 1990s but look from a modern perspective, in the sense that we choose as our starting points the time-dependent coupled-wave equations for the forward and backward propagating fields and an expansion of the fields in terms of the stationary longitudinal modes of the open cavity. As a result, we obtain rather general expressions for the longitudinal excess factor of spontaneous emission (K-factor) and the effective Alpha-factor including the effects of nonlinear gain (gain compression) and refractive index (Kerr effect), gain dispersion and longitudinal spatial hole burning in multi-section cavity structures. The effect of linewidth narrowing due to feedback from an external cavity often described by the so-called chirp reduction factor is also automatically included. We propose a new analytical formula for the dependence of the spontaneous emission on the carrier density avoiding the use of the population inversion factor. The presented theoretical framework is applied to a numerical study of a two-section distributed Bragg reflector laser.
  • Item
    Dynamics in high-power diode lasers
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Bandelow, Uwe; Radziunas, Mindaugas; Zeghuzi, Anissa; Wünsche, Hans-Jürgen; Wenzel, Hans
    High-power broad-area diode lasers (BALs) exhibit chaotic spatio-temporal dynamics above threshold. Under high power operation, where they emit tens of watts output, large amounts of heat are generated, with significant impact on the laser operation. We incorporate heating effects into a dynamical electro-optical (EO) model for the optical field and carrier dynamics along the quantum-well active zone of the laser. Thereby we effectively couple the EO and heat-transport (HT) solvers. Thermal lensing is included by a thermally-induced contribution to the index profile. The heat sources obtained with the dynamic EO-solver exhibit strong variations on short time scales, which however have only a marginal impact on the temperature distribution. We consider two limits: First, the static HT-problem, with time-averaged heat sources, which is solved iteratively together with the EO solver. Second, under short pulse operation the thermally induced index distribution can be obtained by neglecting heat flow. Although the temperature increase is small, a waveguide is introduced here within a few-ns-long pulse resulting in significant near field narrowing. We further show that a beam propagating in a waveguide structure utilized for BA lasers does not undergo filamentation due to spatial holeburning. Moreover, our results indicate that in BALs a clear optical mode structure is visible which is neither destroyed by the dynamics nor by longitudinal effects.