Search Results

Now showing 1 - 3 of 3
  • Item
    Calculation of ultrashort pulse propagation based on rational approximations for medium dispersion
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) Amiranashvili, Shalva; Bandelow, Uwe; Mielke, Alexander
    Ultrashort optical pulses contain only a few optical cycles and exhibit broad spectra. Their carrier frequency is therefore not well defined and their description in terms of the standard slowly varying envelope approximation becomes questionable. Existing modeling approaches can be divided in two classes, namely generalized envelope equations, that stem from the nonlinear Schrödinger equation, and non-envelope equations which treat the field directly. Based on fundamental physical rules we will present an approach that effectively interpolates between these classes and provides a suitable setting for accurate and highly efficient numerical treatment of pulse propagation along nonlinear and dispersive optical media.
  • Item
    Amplifications of picosecond laser pulses in tapered semiconductor amplifiers : numerical simulations versus experiments
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) Tronciu, Vasile; Schwertfeger, Sven; Radziunas, Mindaugas; Klehr, Andreas; Bandelow, Uwe; Wenzel, Hans
    We apply a travelling wave model to the simulation of the amplification of laser pulses generated by Q-switched or mode-locked distributed-Bragg reflector lasers. The power amplifier monolithically integrates a ridge-waveguide section acting as pre-amplifier and a flared gain-region amplifier. The diffraction limited and spectral-narrow band pulses injected in to the pre-amplifier have durations between 10 ps and 100 ps and a peak power of typical 1 W. After the amplifier, the pulses reach a peak power of several tens of Watts preserving the spatial, spectral and temporal properties of the input pulse. We report results obtained by a numerical solution of the travelling-wave equations and compare them with experimental investigations. The peak powers obtained experimentally are in good agreement with the theoretical predictions. The performance of the power amplifier is evaluated by considering the dependence of the pulse energy as a function of different device and material parameters.
  • Item
    Dispersion of nonlinear group velocity determines shortest envelope solitons
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) Amiranashvili, Shalva; Bandelow, Uwe; Akhmediev, Nail N.
    We demonstrate that a generalized nonlinear Schrödinger equation (NSE), that includes dispersion of the intensity-dependent group velocity, allows for exact solitary solutions. In the limit of a long pulse duration, these solutions naturally converge to a fundamental soliton of the standard NSE. In particular, the peak pulse intensity times squared pulse duration is constant. For short durations this scaling gets violated and a cusp of the envelope may be formed. The limiting singular solution determines then the shortest possible pulse duration and the largest possible peak power. We obtain these parameters explicitly in terms of the parameters of the generalized NSE.