Search Results

Now showing 1 - 10 of 18
  • Item
    Dynamical regimes in a monolithic passively mode-locked quantum dot laser
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Vladimirov, Andrei; Bandelow, Uwe; Fiol, Gerrit; Arsenijevi´c, Dejan; Kleinert, Moritz; Bimberg, Dieter; Pimenov, Alexander; Rachinskii, Dmitrii
    Operation regimes of a two section monolithic quantum dot (QD) mode-locked laser are studied experimentally and theoretically, using a model that takes into account carrier exchange between QD ground state and 2D reservoir of a QD-in-a-well structure, and experimentally. It is shown analytically and numerically that, when the absorber section is long enough, the laser exhibits bistability between laser off state and different mode-locking regimes. The Q-switching instability leading to slow modulation of the mode-locked pulse peak intensity is completely eliminated in this case. When, on the contrary, the absorber length is rather short, in addition to usual Q-switched mode-locking, pure Q-switching regimes are predicted theoretically and observed experimentally.
  • Item
    Mode transitions in distributed-feedback tapered master-oscillator power-amplifier
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2008) Radziunas, Mindaugas; Tronciu, Vasile Z.; Bandelow, Uwe; Lichtner, Mark; Spreemann, Martin; Wenzel, Hans
    Theoretical and experimental investigations have been carried out to study the spectral and spatial behavior of monolithically integrated distributed-feedback tapered master-oscillators power-amplifiers emitting around 973 nm. Introduction of self and cross heating effects and the analysis of longitudinal optical modes allows us to explain experimental results. The results show a good qualitative agreement between measured and calculated characteristics.
  • Item
    Dispersion of nonlinear group velocity determines shortest envelope solitons
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) Amiranashvili, Shalva; Bandelow, Uwe; Akhmediev, Nail N.
    We demonstrate that a generalized nonlinear Schrödinger equation (NSE), that includes dispersion of the intensity-dependent group velocity, allows for exact solitary solutions. In the limit of a long pulse duration, these solutions naturally converge to a fundamental soliton of the standard NSE. In particular, the peak pulse intensity times squared pulse duration is constant. For short durations this scaling gets violated and a cusp of the envelope may be formed. The limiting singular solution determines then the shortest possible pulse duration and the largest possible peak power. We obtain these parameters explicitly in terms of the parameters of the generalized NSE.
  • Item
    Effect of higher-order dispersion on modulation instability, soliton propagation and pulse splitting
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2007) Demircan, Ayhan; Pietrzyk, Monika; Bandelow, Uwe
    By solving numerically the extended nonlinear Schrödinger equation we investigate the influence of higher-order dispersion effects on the propagation of optical pulses in highly nonlinear fibers. In the anomalous dispersion regime third-order dispersion can, in general, induce soliton fission and yields asymmetric spectra, whereas modulation instability can be slightly suppressed. In the normal dispersion regime we demonstrate pulse splitting by third-order dispersion, as well as its later suppression by fourth-order dispersion.
  • Item
    Compression limit by third-order dispersion in the normal dispersion regime
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2006) Demircan, Ayhan; Kroh, Marcel; Bandelow, Uwe; Hüttl, Bernd; Weber, Hans-Georg
    Broad-band continua at gigahertz rates generated in high-nonlinear dispersion flattened fibers in the normal dispersion regime near the zero-dispersion wavelength can be used for a subsequent efficient pulse compression, leading to stable high-repetition-rate trains of femtosecond pulses. We show experimentally and theoretically that third-order dispersion defines a critical power, where beyond further compression is inhibited. This fundamental limit is caused by a pulse-breakup.
  • Item
    Analysis of the interplay between soliton fission and modulation instability in supercontinuum generation
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2006) Demircan, Ayhan; Bandelow, Uwe
    We investigate the generation mechanisms for ultrawide spectra in nonlinear optical fibers. Soliton fission and modulation instability represent fundamental mechanisms for the generation process. The primary origin of the spectral broadening changes with the pump-pulse duration. Soliton fission dominates for low input power and short pulses. Its efficiency for supercontinuum generation and especially the extend to the blue side can be increased by proper design of the dispersion profile. The modulation instability has a strong impact for high input powers and greatly enhances the generation process, but leads to a degradation of the coherence properties. Also for short pulses with durations of 60 fs the modulation instability is present and can hardly be suppressed. The interplay between these two effects leads to various characteristics of the resulting spectra, which are modified by to the relative impact of the modulation instability.
  • Item
    Limit for pulse compression by pulse splitting
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2006) Demircan, Ayhan; Bandelow, Uwe
    We have detected a fundamental pulse-compression limit for high-nonlinear fibers in the normal dispersion regime near the zero-dispersion wavelength. The desired generation of a broadband continuum by self-phase modulation is limited by already small amounts of third-order dispersion, which results in pulse splitting above a critical pulse power. We investigate the critical fiber length in dependence on pulse- and fiber parameters.
  • Item
    Calculation of ultrashort pulse propagation based on rational approximations for medium dispersion
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) Amiranashvili, Shalva; Bandelow, Uwe; Mielke, Alexander
    Ultrashort optical pulses contain only a few optical cycles and exhibit broad spectra. Their carrier frequency is therefore not well defined and their description in terms of the standard slowly varying envelope approximation becomes questionable. Existing modeling approaches can be divided in two classes, namely generalized envelope equations, that stem from the nonlinear Schrödinger equation, and non-envelope equations which treat the field directly. Based on fundamental physical rules we will present an approach that effectively interpolates between these classes and provides a suitable setting for accurate and highly efficient numerical treatment of pulse propagation along nonlinear and dispersive optical media.
  • Item
    Improving the modulation bandwidth in semiconductor lasers by passive feedback
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2006) Radziunas, Mindaugas; Glitzky, Annegret; Bandelow, Uwe; Wolfrum, Matthias; Troppenz, Ute; Kreissl, Jochen; Rehbein, Wolfgang
    We explore the concept of passive-feedback lasers for direct signal modulation at 40 Gbit/s. Based on numerical simulation and bifurcation analysis, we explain the main mechanisms in these devices which are crucial for modulation at high speed. The predicted effects are demonstrated experimentally by means of correspondingly designed devices. In particular a significant improvement of the modulation bandwidth at low injection currents can be demonstrated.
  • Item
    A model equation for ultrashort optical pulses
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2008) Amiranashvili, Shalva; Vladimirov, Andrei; Bandelow, Uwe
    The nonlinear Schrödinger equation based on the Taylor approximation of the material dispersion can become invalid for ultrashort and few-cycle optical pulses. Instead, we use a rational fit to the dispersion function such that the resonances are naturally accounted for. This approach allows us to derive a simple non-envelope model for short pulses propagating in one spatial dimension. This model is further investigated numerically and analytically.