Search Results

Now showing 1 - 1 of 1
  • Item
    Modeling and simulation of strained quantum wells in semiconductorlasers
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2000) Bandelow, Uwe; Kaiser, Hans-Christoph; Koprucki, Thomas; Rehberg, Joachim
    A model allowing for efficiently obtaining band structure information on semiconductor Quantum Well structures will be demonstrated which is based on matrix-valued kp-Schrödinger operators. Effects such as confinement, band mixing, spin-orbit interaction and strain can be treated consistently. The impact of prominent Coulomb effects can be calculated by including the Hartree interaction via the Poisson equation and the bandgap renormalization via exchange-correlation potentials, resulting in generalized (matrix-valued) Schrödinger-Poisson systems. Band structure information enters via densities and the optical response function into comprehensive simulations of Multi Quantum Well lasers. These device simulations yield valuable information on device characteristics, including effects of carrier transport, waveguiding and heating and can be used for optimization.